
Introduction to Computing
MCS1101B
Lecture 10

By
Soumadip Biswas

Associate Professor, IEM

Recap

● Character arrays
○ String
○ Scanning a string
○ Operations on strings - string.h

● Preprocessors

● User defined datatypes
○ Structures
○ Complex numbers example
○ sizeof structures
○ The typedef keyword

Structure - Recall Complex Numbers Example

● Example:
○ Complex numbers are of the

form x + i y
○ x and y can be any real

numbers

typedef struct complex{
float x;
float y;

}Q;

Q n1 = {10.0, 20.0};
Q n2;
Q *ptr;

Structures and pointers

● Since structures are just another
datatype - it is possible to create
pointers of it’s type

● struct complex *ptr; ⇒ is able to
contain the address of structure
variable

○ We could also write Q *ptr; ⇒since we
renamed it as Q

● So, sizeof(ptr) ⇒ ?

● How do you access the members
using pointers

○ Q *ptr; Q v = {10, 20};
○ ptr = &v;
○ *ptr.x ⇒ will not work
○ You can write (*ptr).x
○ Alternatively ptr->x can be used to

access the members using pointers

Structures examples

● Store student record with name, roll
number, height, weight, DoB, DoJ

● How do you store information about
100 students?

● What happens if one or more
student joins later on?

● What happens if you do not know
the number of students
beforehand?

● Solutions
— ideas?

A possible implementation can be:
typedef struct {

char *name;
char DoB[10], DoJ[10];
int roll_no;
float height, weight;

}student;

Array and Structure

● Since structures are just another
datatype - it is possible to create an
array

● Q arr[5]; ⇒ is equivalent of 5 Q
variables

○ We can access the variables using
indexes e.g. arr[1], arr[3], etc.

○ We can also access using pointer
arithmetic ← remember this?

● arr[i].x, arr[i].y ← to access member
variables

● arr[i] == *(arr + i)
● So (arr+i)->x should work

– but how to create array when size is
not known beforehand?

Dynamic Memory allocation (DMA)

● This is another way to allocate
memory for variables

● It can allocate memory to a variable
during the runtime of the program

○ So, you can read/scan the number of
elements from the user

○ Then allocate necessary memory
● It works for allocating memory for

○ A single variable of any type
○ An array of any type

● We need a new include library
○ stdlib.h

● We will use two functions from this
library for DMA

○ malloc - memory allocator
○ free - frees some allocated memory

● Prototype: void* malloc (int size)
● It allocates a memory space of the

given size and returns a pointer(*)
(without any specific type, i.e. void)

● You can typecast it to your need

DMA (contd)

● To create a int variable using
malloc, declare a int pointer
variable

○ int *ptr;
● Allocate memory using malloc

○ ptr = (int*) malloc(sizeof(int));
● Access the values using *ptr

○ *ptr = 10;
○ printf (“%d”, *ptr); // →prints 10

● Caution: if you try to access *ptr
before allocating memory, the
behaviour is undefined

● So, for the structure Q, we can do
the same

○ Q *ptr;
○ ptr = (Q*) malloc (sizeof(Q));
○ Access: ptr->x, ptr->y

Array and DMA

● To create an array using DMA
● We need to specify the total

memory size required for the array
● e.g., for an integer array of size 10,

we can write the following code
○ int *arr;
○ arr = (int*) malloc (sizeof(int) * 10);
○ Access arr[i] or *(arr+i)

● If you need to take size from the
user, you can do the following

○ int n;
○ int *arr;
○ scanf (“%d”, &n);
○ arr = (int*) malloc (sizeof(int) * n);

● To free an allocated memory, you
can write

○ free (ptr)
■ Make sure the ptr is a valid one
■ Otherwise, it may result in error

Adding an element in array

● Array has a fixed size
○ Be it allocated using DMA or statically

● Assume you have an array of 10
elements

○ You have inserted 5 elements from 0 to
4 indexes, then you want to insert
another element in position 2

○ You have already inserted 10 elements,
then you want to add another element

● A better solution
○ Linked list

Storage issues

● Single variable
○ Can only store a value

● Array of variables
○ Can store multiple values, but size

allocation needs to be known first
● Array using DMA - can be allocated

later, based on requirements
○ But insertion, deletion, resizing is still an

issue
● Linked list is used to alleviate such

problems
○ It uses more memory compared to

arrays to store the same information

● ←All of these solution works only
until program is running, once it is
closed all data are lost.

● The solution to this problem is
usage of persistent storage (you
know these as pen drive, ssd, hard
disk, etc.)

● But how do you write in such
devices

— We create files.

File

● Stored as sequence of bytes,
logically contiguous

○ May not be physically contiguous on
disk, but you don’t need to worry about
that

● Two types of files
○ Text - can only contain ASCII characters
○ Binary - can contain non-ASCII

characters
■ Example: image, video,

executable, audio, etc.

● Basic operations on file (stdio.h)
○ Open
○ Read
○ Write
○ Close

● A file needs to be open before you
can do read or write operations

● Once the works are done on file
you need to close the file

● In case, close is not done, some/all
contents of the file may be lost

File (contd)

● FILE* is a datatype used to
represent a pointer to a file

● To open a file we use a function
called fopen

○ It takes two parameters
■ Name of the file
■ Mode in which it is to be opened

○ It returns a pointer to the file if the file is
opened successfully, otherwise it
returns NULL

Example of a file creation for writing

FILE *fp;
char filename[] = “a_file.dat”
fp = fopen (filename, “w”);
if (fp == NULL)
{

printf (“unable to create file”);
/* DO SOMETHING */

}
/* WRITE SOMETHING IN FILE */
fclose (fp);

File (contd)

Modes of opening a file

● “r” – Opens a file for reading
○ Error if the file does not already exist
○ “r+” allows write also

● “w” – Opens a file for writing
○ If file does not already exist, it creates a

new file
○ If file already exists, all the previous

contents of the file will be overwritten
○ “w+” allows read also

● “a” – Opens a file for appending
(write at the end of the file)

○ “a+” allows read also

● When error occurs, e.g. file failed to
open, the rest of your program may
not work properly

○ In such case, you may want to exit the
program on emergency basis

○ The function exit() from stdlib.h allows
you to do so

○ If can be called from anywhere in the c
program and it will terminate the
program at once

File (contd)

FILE *fp;
char filename[] = “a_file.dat”
fp = fopen (filename, “w”);
if (fp == NULL)
{

printf (“unable to create file”);
/* DO SOMETHING */
exit(-1);

}
/* WRITE SOMETHING IN FILE */
fclose (fp);

● You can pass any integer in the exit
function

● This value will be returned as the
output of the program

○ Recall that a c function is a collection of
functions and functions must return
something

○ A negative value (by convention) is
treated as some error has happened

Next Class…

● Python preliminaries

