Introduction to Computing

MCS1101B
Lecture 10

By
Soumadip Biswas
Associate Professor, IEM

L((Q\
I

/
g
§

R(44/

Recap

e Character arrays e User defined datatypes
o String o Structures
o Scanning a string o Complex numbers example
o Operations on strings - string.h o sizeof structures

e Preprocessors o The typedef keyword

Structure - Recall Complex Numbers Example

e Example: typedef struct complex{
o Complex numbers are of the float x;
formx +iy float y;
o xandy can be any real 1Q;
numbers

Qn1={10.0, 20.0};
Q n2;
Q *ptr;

Structures and pointers

e Since structures are just another
datatype - it is possible to create
pointers of it's type

e struct complex *ptr; = is able to
contain the address of structure

variable
o We could also write Q *ptr; =since we
renamed it as Q

e So, sizeof(ptr) = ?

e How do you access the members
using pointers

(@)

o O O O

Q *ptr; Qv = {10, 20};

ptr = &v;

*ptr.x = will not work

You can write (*ptr).x

Alternatively ptr->x can be used to
access the members using pointers

Structures examples

e Store student record with name, roll e Solutions

number, height, weight, DoB, DoJ — ideas?
e How do you store information about
100 students? A possible implementation can be:
e \What happens if one or more typedef struct {
student joins later on? char *name;
e \What happens if you do not know char DoB[10], DoJ[10];
the number of students int roll_no;
beforehand? float height, weight;

}student;

Array and Structure

e Since structures are just another e arrfi].x, arr[i].y « to access member
datatype - it is possible to create an variables
array e arr[i] ==*(arr +1i)

e Q arr[5]; = is equivalent of 5 Q e So (arr+i)->x should work
variables

o We can access the variables using
indexes e.g. arr[1], arr[3], etc.

o We can also access using pointer
arithmetic «— remember this?

— but how to create array when size is
not known beforehand?

Dynamic Memory allocation (DMA)

e This is another way to allocate e \We need a new include library
memory for variables o stdlib.n
e It can allocate memory to a variable ® We will use two functions from this
during the runtime of the program library for DMA
o So, you can read/scan the number of o malloc - memory allocator
elements from the user o free - frees some allocated memory
o Then allocate necessary memory e Prototype: void* malloc (int size)
e |t works for allocating memory for e |t allocates a memory space of the
o Culigle veiklele o any e given size and returns a pointer(*)

© Anarray of any type (without any specific type, i.e. void)

e You can typecast it to your need

DMA (contd)

e To create a int variable using e Caution: if you try to access *ptr
malloc, declare a int pointer before allocating memory, the
variable behaviour is undefined

o int*ptr; e So, for the structure Q, we can do

e Allocate memory using malloc the same

o ptr = (int*) malloc(sizeof(int)); o Q*ptr:
e Access the values using *ptr o ptr=(Q*) malloc (sizeof(Q));
o *ptr=10; o Access: ptr->x, ptr->y

o printf ("%d”, *ptr); // —prints 10

Array and DMA

e To create an array using DMA
e We need to specify the total

memory size required for the array
e e.g., for an integer array of size 10,

we can write the following code

(@)

(@)

(@)

int *arr;
arr = (int*) malloc (sizeof(int) * 10);
Access arrfi] or *(arr+i)

If you need to take size from the

user, you can do the following

o intn;

o int *arr;

o scanf (“%d”, &n);

o arr = (int*) malloc (sizeof(int) * n);
To free an allocated memory, you

can write
o free (ptr)
m Make sure the ptris a valid one
m Otherwise, it may result in error

Adding an element in array

e Array has a fixed size e A better solution
o Be it allocated using DMA or statically o Linked list
e Assume you have an array of 10
elements

o You have inserted 5 elements from 0 to
4 indexes, then you want to insert
another element in position 2

o You have already inserted 10 elements,
then you want to add another element

Storage issues

e Single variable
o Can only store a value
e Array of variables

o Can store multiple values, but size
allocation needs to be known first

e Array using DMA - can be allocated
later, based on requirements

o But insertion, deletion, resizing is still an
issue

e Linked list is used to alleviate such
problems

o It uses more memory compared to
arrays to store the same information

—All of these solution works only
until program is running, once it is
closed all data are lost.

The solution to this problem is
usage of persistent storage (you
know these as pen drive, ssd, hard
disk, etc.)

But how do you write in such
devices

— We create files.

File

e Stored as sequence of bytes,

logically contiguous
o May not be physically contiguous on

disk, but you don’t need to worry about
that

e Two types of files
o Text - can only contain ASCII characters
o Binary - can contain non-ASCII
characters
m Example: image, video,
executable, audio, etc.

Basic operations on file (stdio.h)

o Open
o Read
o Write
o Close

A file needs to be open before you
can do read or write operations
Once the works are done on file
you need to close the file

In case, close is not done, some/all
contents of the file may be lost

File (contd)

e FILE* is a datatype used to
represent a pointer to a file
e To open a file we use a function

called fopen
o It takes two parameters
m Name of the file
m Mode in which it is to be opened
o It returns a pointer to the file if the file is
opened successfully, otherwise it
returns NULL

Example of a file creation for writing

FILE *fp;

char filenamel] = “a_file.dat”

fp = fopen (filename, “W”);

if (fo == NULL)

{
printf (“unable to create file”);
/* DO SOMETHING */

}

[* WRITE SOMETHING IN FILE */

fclose (fp);

File (contd)

Modes of opening a file

e “r’— Opens a file for reading
o Error if the file does not already exist
o “r+” allows write also
e “w’— Opens a file for writing
o If file does not already exist, it creates a
new file
o If file already exists, all the previous
contents of the file will be overwritten
o ‘“w+” allows read also
e “a’— Opens a file for appending

(write at the end of the file)
o “a+” allows read also

When error occurs, e.g. file failed to
open, the rest of your program may

not work properly

o In such case, you may want to exit the
program on emergency basis

o The function exit() from stdlib.h allows
you to do so

o If can be called from anywhere in the c
program and it will terminate the
program at once

File (contd)

FILE *fp;

char filename[] = “a_file.dat”

fp = fopen (filename, “W”);

if (fp == NULL)

{
printf (“unable to create file”);
[* DO SOMETHING */
exit(-1);

}

/* WRITE SOMETHING IN FILE */

fclose (fp);

You can pass any integer in the exit
function
This value will be returned as the

output of the program
o Recall that a ¢ function is a collection of
functions and functions must return
something
o A negative value (by convention) is
treated as some error has happened

Next Class...

