
Introduction to Computing
MCS1101B
Lecture 1

By
Soumadip Biswas

Associate Professor, IEM

Outline of the Course

● Broad overview
○ Basic prerequisites of computation
○ Computation using the language C
○ Computation using the language Python

● Evaluation
○ Attendance
○ Quiz
○ Mid sem
○ End Sem
○ Project

● Reference books
○ The C Programming Language by B. W. Kernighan and D. M. Ritchie.
○ A Book on C: Programming in C by Al Kelley and Ira Pohl

Computation

● What is computation?
○ The typical definition: The action of mathematical calculation

● Why computation is needed?
○ Almost everything requires computation in one form or the other
○ e.g. shopping, grades, rocket science, cellphone…
○ It can take many and any form - from printing a letter to predict who will win the World Cup to

determine the number of atoms in the universe to …
● Properties of computation

○ They are mostly boring monotonous tasks
○ No real thinking is required once you know exactly what formula to use and when to use

● The role of computer programs
○ It is the tool using which we can automate computation

How do Computers Compute?

● It uses its brain - similar to humans
○ It’s called a CPU (Central Processing Unit)

● Broadly a typical CPU consists of
○ ALU (Arithmetic and Logic Unit)
○ CU (control Unit)
○ Note: Modern CPUs are much more

advanced and has more components, but
let’s ignore that for the moment …

● It needs some input(s)
○ Keyboard, mouse, camera, etc.

● It produces some output(s)
○ Monitor, printer, speaker, etc. The Von Neumann Architecture

How do Computers Store Data?

● It uses memory - similar to humans
● Different types of memory aka. storage

○ Primary memory - RAM (Random Access Memory)
○ Secondary memory - Hard disk, SSD
○ Other types of storages - ROM (Read Only Memory),

Pen-drive, Floppy disk, etc.
● The unit of computer memory

○ It’s called a bit
○ It can store either a 0 or a 1
○ 8 bits constitute a byte
○ …refer to the image →

● Each memory location has an unique address

What can a Computer store?

● Only 0s and 1s can be stored in computer memory (i.e. bits)
○ So, basically numbers

● But, it can store anything (image, text, videos), right?
○ How does it do it?
○ This is where files/structures come into the picture

● Computer interprets sequence of numbers in many different
○ But how do a computer know how to interpret something
○ This is where computer programs come into the picture
○ Subsequently computer programmers follow; that means you, in the near future, hopefully :-)

So, how do Computers Store Numbers?

● The binary number system
○ By using 0 and 1
○ The base (radix) is 2

● Why binary?
● How do you get a binary number?

○ Think how decimal numbers work : 103 = 1 * 10^2 + 0 * 10^1 + 3 * 10^0
○ So, 103 = 1 * 2^6 + 1 * 2^5 + 0 * 2^4 + 0 * 2^3 + 1 * 2^2 + 1 * 2^1+ 1 * 2^0 = 1100111
○ 150 = ?2

● So, what is the maximum number a byte can hold?

Binary Operations

● Arithmetic operations: Addition, Subtraction, Multiplication, Division
● Logical operations: And, Or, Xor, Not
● Complements: 1’s complement, 2’s complement

Data
● What is data?

○ It can be anything - a number, a character, a set, an image, etc.
○ A meaningful data is an information

● For a computer
○ At the smallest, it is a bit
○ Predefined interpretation of collection do bits constitutes different data types

● Basic types of data
○ Integer
○ Real numbers
○ Alphabets
○ Special symbols
○ … anything else?

Programming and Software

Computer needs to be programmed to do tasks

● Programming is the process of writing instructions in a language that can be
understood by the computer so that a desired task can be performed by it

● Program: sequence of instructions to do a task, computer processes the
instructions sequentially one after the other

● Software: programs for doing tasks on computers

Computers understand machine language (set of instructions) which are different
strings of 0s and 1s only

● They are hard to remember
● So, names are given to these instructions e.g. ADD, START,COPY, etc.

Machine Language and Programming

Problems with Programming using Instruction Set

● Different CPU can have different instruction sets
○ Need to write same code multiple times

● They are, still, hard to remember
● Solution: High level programming languages e.g. C, C++, Java,

etc.
○ Does not depend on CPU
○ There is a compiler that converts the high level language to low level

machine language that computers can understand

Programming Levels

Steps of Programming

● Step 1: Write the program in a high-level language
○ In your case, C

● Step 2: Compile the program using a compiler
○ C compiler - gcc

● Step 3: Run the program
○ i.e. ask the computer to execute it

So, Let Us C

● Make sure you have a laptop with you
○ Or else, you are paired with a friend who has one.

● You need to have a C compiler installed in your computer
○ I prefer gcc - The GNU Compiler Collection
○ You can find “how to install gcc” tutorials all over the internet for your operating system

● To write a code
○ You will need any text editor
○ You may choose one with syntax highlighting e.g. sublime text(mac), notepad++(windows),

gedit(linux), vi, emacs, … there are many
● To compile a code

○ You need to open a terminal and execute the following: gcc <filename>.c
○ <filename> is basically the name you have given to your text file
○ The .c extension is optional,but you should always use it while naming a c file

Anatomy of Programming

● You have a problem to solve
○ You take steps to solve the problem

● What are these steps, really?
○ Represent the problem formally
○ Take a decision

■ Some tasks based on the decision
■ Evaluate outcomes

○ Repeat until problem is solved.

The Customary First C Code

͎ The preprocessor

͎ A function definition
͎ Start of the function

͎ A comment
͎ A function call
͎ A return value

͎ End of the function

#include <stdio.h>

int main (void)

{

 /* my first program in C */

 printf ("Hello, World! \n");

 return 0;

}

#include <stdio.h>

int main()

{

 /* my first program in C */

 printf("Hello, ");

 printf("World! \n");

 return 0;

}

#include <stdio.h>

int main()

{

 int a;

 a = 10;

 printf (“%d\n”, a);

 return 0;

}

#include <stdio.h>

int main()

{

 int a, b;

 a = 10;

 b = 20;

 printf (“%d %d\n”, a, b);

 return 0;

}

#include <stdio.h>

int main()

{

 int a = 10, b = 20, x;

 printf (“a = %d, b = %d\n”, a, b);

 if (a > b)

 {

 x = a;

 }

 else

 {

 x = b;

 }

 printf (“The larger value is %d\n”, x);

 return 0;

}

#include<stdio.h>

Int main()

{

float c, f;

f = 212;

c = 5 * (f - 32) / 9;

 printf ("Fahrenheit value %f - Celsius value is %f \n", c, f);

}

#include<stdio.h>

Int main()

{

float c, f;

scanf ("%f", &f); //take a keyboard input

c = 5 * (f - 32) / 9;

 printf ("Fahrenheit value %f - Celsius value is %f \n", c, f);

}

Structure of a C Program

● They are a collection of functions
● Exactly one special function called “main” which must

be present
● Each function has statements

○ e.g. declaration, assignment, condition check, looping
○ Statements are executed one by one

The C Character Set

● A-Z
● a-z
● 0-9
● Special Characters

! # % ^ & * () - _ + = ~ [] \ | ; : ‘ “ { } , . < > / ? blank

A C program should not contain anything else.

Things One Might Use in C Programming

● Variables
● Constants
● Expressions

○ Arithmetic, Logical, Assignment
● Statements

○ Declaration, Assignment,
○ Control Structures - conditional branching, looping

● Arrays
● Pointers
● Functions
● Structures

Variables

● Very important concept for programming
● An entity that has a value and is known to the program by a

name
● Can store any temporary result while executing a program
● Can have only one value assigned to it at any given time during

the execution of the program
● The value of a variable can be changed during the execution of

the program

Variables (contd.)

● Variables stored in memory
● Remember that memory is a list of storage locations, each

having a unique address
● A variable is like a bin

○ The contents of the bin is the value of the variable
○ The variable name is used to refer to the value of the variable
○ A variable is mapped to a location of the memory, called its

address

Constants (Read-only variables)

● Sometimes you need to have some values that remain the
same throughout a program
○ e.g. universal constants, limits, ranges of data, etc.

● In that case you can use a constant type indicator to
enforce that property

● Prevents accidental change of the value

Data Types of Variables or Constants

● Each variable has a type,
○ It indicates what type of values the variable can hold

● Four common data types in C
○ int - can store integers (usually 4 bytes)
○ float - can store floating point numbers (usually 4 bytes)
○ double - can store floating point numbers (usually 8 bytes)
○ char - can store a character (1 byte)

● A keyword called const is used to declare a read-only variable

● Must declare a variable (specify its type and name) before
using it anywhere in your program

● All variable declarations should be at the beginning of the
main() or other functions

● A value can also be assigned to a variable at the time the
variable is declared.
○ int speed = 30;
○ char flag = ‘y’;

Variable Declaration

● Sequence of letters and digits
● First character must be a letter or ‘_’ No special characters other

than ‘_’
● No blank in between
● Names are case-sensitive (max and Max are two different names)
● Examples of valid names:

○ i rank1 MAX max Min class_rank
● Examples of invalid names:

○ a’s fact rec 2sqroot class,rank

Variable Naming

● Used by the C language, cannot be used as variable names
● Examples:

○ int, float, char, double, main, if else, for, while. do, struct, union,
typedef, enum, void, return, signed, unsigned, case, break,
sizeof, ...

○ There are others, see textbook

C Keywords

In The Next Class…

● You will learn more about printf and scanf functions
● You will learn more about operators

○ Logical operators
○ arithmetic operators
○ Special operators

● You will learn about expressions
● You will learn more about control structures

○ Conditional branching
○ Looping

● You will be introduced to pointers and array

