
 Q1.1. Mark 1
 Which of the following are not valid variable name(s) in C language?
 _name, high5, 4square, do_while, digit-sum, main
 4square, digit-sum

 Q1.2. Mark 1
 What will be the value of the variable count at the end of the loop?

 int i, j, count = 0, n = 20;
 for (i = 0; i < n; i++)

 for (j = n - i; j > 0; j = j - 2)
 count++;

 count = 110
 Q1.3. Mark 1
 What will be the content of the array A, after the following code segment is executed?

 int A[6] = {3, 5, 2, 4, 9, 1};
 int i = 5;
 do {

 A[6-i] = A[6-i] + A[5-i];
 i--;

 } while (i > 0);
 A = {3, 8, 10, 14, 23, 24}

 Q1.4. Mark 1
 What will be the output of the following code segment for a=20 and for a=0?

 int a;
 switch(a) {

 case 10: a = a + 20;
 break;

 case 20: a = 10;
 case 37: a * 30;
 default: a %= 6;
 case 40: a = a + 40;

 break;
 case 50: a = a + 50;
 }

 printf("%d", a);
 a=20 ⇒ 44, a=0 ⇒ 40

 Q1.5. Mark 1
 What will be the value of the variable count at the end of the loop?

 int i = 200, j = 50, count = 10;
 while(i > 0 && j > 0)
 {

 i = i - j;
 j = j - 5;
 count++;

 }
 count=15

 Q1.6. Mark 1
 What will be the output of the following code segment?

 int x = 1, y = 0, z = 1, t;
 for (t = 0; t < 10; ++t)
 {

 y += (x) ? z : -z;
 z++;
 x = !x;

 }
 printf("y = %d", y);
 y = -5
 Q1.7. Mark 1
 What will be the output of the following code segment?

 int x = 0;
 if (x = 0)

 printf ("if case: %d", x);
 else if (x -= 2)

 printf ("1st else-if case: %d", x);
 else if (x == -2)

 printf (“2nd else-if case: %d”, x);
 else

 printf ("else case: %d", x);
 1st else-if case: -2

 Q1.8. Mark 1
 What will be the output of the following code segment?

 int a[5] = { 15, 1, 5, 30, 25 };
 int i, j, k;
 i = ++a[1] ;
 j = a[1]++ ;
 k = a[i++] ;
 printf ("%d,%d,%d", i, j, k);
 3,2,5

 Q1.9. Mark 1
 Write the output of the following code segment.

 printf ("Expression values = %d %d %f \n", 5/2*2, 2+5/2*3-1, (float) (5/2));
 Expression values = 4 7 2.000000

 Q1.10. Mark 1
 Write the output of the following code segment.

 printf ("Expression values = %d %o %x \n", 1024, 1024, 1024);
 Expression values = 1024 2000 400

 2

 Q2.1. Mark 2
 Assume that you have taken a character as input (char ch) from the user. Your task is to
 check if ch is a lowercase alphabet or not; if yes, then print it, if it is uppercase, then print
 the lowercase version ch , if ch is not an alphabet, print the message “ not an alphabet ”.
 if (ch >= ‘A’ && ch <= ‘Z’)
 {

 printf (“%c”, ch + ‘a’ - ‘A’);
 }
 else if (ch >= ‘a’ && ch <= ‘z’)
 {

 printf (“%c”, ch);
 }
 else
 {

 printf (“not an alphabet”);
 }

 Q2.2. Mark 2
 Assume that you have taken inputs of principal amount (int p), rate of interest in
 percentage (float r) and time of investment in years (int y); now you calculate the total
 amount of interest gathered in simple interest(float si) as follows: si = y /100 * r * p .

 (a) Will this statement above always result in the correct output? If yes, then calculate
 the value of si for p =2000, r =10.4, y =4, and if not, then rewrite the statement
 correctly.

 (b) Also, write the statement that will calculate using p and r , the time (in years) it takes
 to double the invested amount.

 (a)
 It is not going to give the correct result (always) because it uses integer division (y/100).
 A correct version will be : si = (float) y /100 * r * p

 (b)
 We replace si with 2* p in the above equation and solve for y to calculate time_to_double
 (it may be a fractional). Therefore, we need to declare the variable as float type.

 float time_to_double;
 time_to_double = 200 / r; // note that, r is already float, and hence, 200/r is also float

 3

 Q2.3. Mark 2
 Examine the following program carefully and figure out (write in one line) what the program
 does? Write the output of the program for x = 75 and y = 30

 #include <stdio.h>
 void main()
 {

 int x, y ;
 printf(“Enter two numbers: “) ;
 scanf(“%d%d”, &x, &y);
 while(x!=y)
 {

 if(x>y) x -= y;
 else y -= x;
 printf (“x=%d y=%d\n”,x,y);

 }
 printf ("%d\n",x);

 }
 It takes input from the user the values for x and y, and then it calculates the gcd of x and y.

 output of the program for x=75, y=30
 x=45 y=30
 x=15 y=30
 x=15 y=15
 15

 Q2.4. Mark 2
 Write a function called calc_pow that takes two integers (x and y) as inputs and returns the
 value of x to the power y . Just write the prototype and definition of the function – you must
 write this code without any major mistakes.
 int calc_pow (int x, int y)
 {

 int i=y, result=1;
 while (i--)

 result *=x;
 return result;

 }

 4

 Q2.5. Mark 2
 Figure out the output of g(3) and g(5). The function g(x) is defined below.

 int g(int x)
 {

 int k;
 k = (x>2) ? g(x-1) - g(x-2) : 1;
 return k;

 }
 g(3) ⇒ 0
 g(3) = g(2) - g(1)

 = 1 - 1 = 0

 g(5) ⇒ -1
 g(5) = g(4) - g(3)

 = g(4) - 0 //since g(3) = 0, as shown above
 = g(3) - g(2)
 = 0 - 1 = -1

 Q2.6. Mark 2
 Write a function/code segment that will round off a floating point number to two decimal
 places (e.g. 244.67823 will be rounded off to 244.68).
 Hint: To round, you may convert the floating point number appropriately to an integer and
 then back to a floating point number
 float rounding_float_val (float x)
 {

 int y = 1000 * x;
 if (y%10 >= 5)
 {

 y /= 10;
 y++;

 }
 else

 y /= 10;
 return (float) y / 100;

 }

 Q2.7. Mark 2
 Write a code segment that counts the number of elements not divisible by an integer k in a
 given integer array A of size n . You may assume that the values of array A and the values
 for n and k are already scanned from the user. You can write the rest of the logic.
 for (i=0; i <n; i++)
 {

 if (A[i] %k != 0)
 printf (“%d ”, A[i]);

 }

 5

 Q3.1. Mark 4
 I would like to calculate the number of days till a given date from the start of the year of the
 date.
 For example, if the date 13-03-2000 is given, I would like to count 31 days for January
 2000, 29 days for February 2000 (since 2000 is a leap year) and 13 days for March 2000
 since that date is given; hence, the answer is 31+29+13 = 73 days.

 → Your job is to write the programmatic logic that can achieve this for any user-given date.
 Show the sequence of execution of your date of birth (as user input).

 You may use the following code framework, or you can write your own version.

 #include<stdio.h>
 int main ()
 {
 int d, m, y, result =0 ;
 scanf (“%d %d %d”, &d, &m, &y); //read the date from the user as values for date, month and year

 //verify if the entered data from the user is valid or not i.e. m cannot be greater than 12, y must be
 non-negative integer, etc.; in the case of invalid data return -1, otherwise, proceed to the next steps
 if (y <= 0 || (m<=0 && m>12) || (d<=0 || d>31))
 {

 // the above condition is not exactly accurate, but let's keep this simple
 // to make this accurate a lot more conditions needs to be checked (refer to the last page)
 // e.g. d cannot be 29 if y is not a leap year, d cannot be more than 30 if m is 11,9, etc.
 printf (“invalid input”);
 return -1;

 }
 //determine if you need to add an extra day in result
 if ((y%4 == 0) && ((y%400 == 0) || (y%100 != 0)))

 result += 1;
 //determine how many days corresponding to the months before the days are to be added
 switch (m-1)
 {

 case 12: result += 31;
 case 11: result += 30;
 case 10: result += 31;
 case 9: result += 30;
 case 8: result += 31;
 case 7: result += 31;
 case 6: result += 30;
 case 5: result += 31;
 case 4: result += 30;
 case 3: result += 31;
 case 2: result += 28;
 case 1: result += 31;

 }
 //add the day in the last month
 result += d;

 printf (“The count of days is %d”, result);
 return 0;
 }
 Hint : You may use switch case statements to make life easier for you.

 6

 Q3.2. Mark 4
 I call a non-zero positive integer number marvelous if the number is divisible by the sum of
 its digits.
 For example, the number 171 is divisible by (1+7+1) = 9, and so 171 is marvelous ,
 whereas 172 is not marvelous . I would like to know if a number is marvelous or not.

 → Your job is to write the programmatic logic that takes a positive integer number as input
 and checks whether the number is marvelous or not. Show the sequence of execution of
 your code for the total mark (given as user input) you obtained in class 12th.

 You may use the following code framework, or you can write your own version.

 #include<stdio.h>
 int main ()
 {
 int n, sum , tmp ;
 scanf (“%d”, &n); //read the number from the user

 //verify if the entered data from the user is valid or not i.e. n must be a non-zero positive integer; in
 the case of an invalid n return -1, otherwise, proceed to the next steps
 if (n<=0)
 {

 printf (“invalid input”);
 return -1;

 }
 //initialize the sum
 sum = 0;
 tmp = n;
 //think and use known tools to extract a digit from n and add it to the sum
 do
 {

 //adjust the parameters of your solution and repeat until …
 sum += tmp%10;
 tmp = tmp/10;

 }while (tmp);

 //check if n satisfies the condition for being marvelous and print appropriate message
 if (n % sum == 0)

 printf (“%d is marvelous”, n);
 else

 printf (“%d is not marvelous”, n);
 return 0;
 }
 Hint : You will need to use the modulus operator and looping

 7

 Q3.3. Mark 4
 I have an array of integers in arbitrary order. Had the elements of the array were sorted,
 some of the elements would be in different positions (indexes) of the array. This (would be)
 position for some element is known as the rank of that element. I do not want to sort the
 array, but I still would like to know the rank of all the elements in the array.
 For example: I have the array A = { 34, 23, 12, 100 }, then the sorted version of the array
 would be { 12, 23, 34, 100 }; hence the rank of 34 is 2, rank of 23 is 1, rank of 12 is 0, and
 rank of 100 is 3.

 → Your job is to write the programmatic logic that prints the rank of all the elements in the
 array. You may assume that the array A has already been scanned.

 You may use the following code framework, or you can write your own version.

 #include<stdio.h>
 #define size 10
 int main ()
 {
 int A[size];
 int i , j, rank ;
 //scan the array from the user
 for (i=0; i<size; i++)

 scanf (“%d”, &A[i]);

 //for each element in the array
 for (i=0; i<size; i++)
 {

 //calculate the rank of the element
 rank = 0;
 for (j=0; j<size; j++)
 {

 if (A[j] < A[i])
 rank++;

 }
 printf (“rank of %d is %d\n”, A[i], rank);

 }
 return 0;
 }
 Hint : rank of an element is basically is the number of elements present in the array which
 are smaller than that element

 8

 Date validation code - all check conditions

 //check year
 if(y>=1900 && y<=9999)
 {

 //check month
 if(m>=1 && m<=12)
 {
 //check day
 if((d>=1 && d<=31) && (m==1 || m==3 || m==5 || m==7 || m==8 ||

 m==10 || m==12))
 printf("Date is valid.\n");

 else if((d>=1 && d<=30) && (m==4 || m==6 || m==9 || m==11))
 printf("Date is valid.\n");

 else if((d>=1 && d<=28) && (m==2))
 printf("Date is valid.\n");

 else if(d==29 && m==2 && (y%400==0 ||(y%4==0 && y%100!=0)))
 printf("Date is valid.\n");

 else
 printf("Day is invalid.\n");

 }
 else
 {

 printf("Month is not valid.\n");
 }

 }
 else
 {

 printf("Year is not valid.\n");
 }

 9

