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Introduction to Planar Graphs

Definition: A graph is planar if it can be drawn on a plane without edge
crossings.
Key Properties:

Planar graphs have a special structure that follows certain constraints.

They are crucial in circuit design, geographic mapping, and network
visualization.

Example:

A

B

C

D

Exercise: Show that K4 is planar but K5 is not.
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Euler’s Formula for Planar Graphs

Theorem: For a connected planar graph with V vertices, E edges, and F
faces:

V − E + F = 2.

Proof Outline:

Base Case: Holds for trees (E = V − 1,F = 1).

Inductive Step: Adding an edge creates a new face, preserving
V − E + F .

Exercise: Verify Euler’s formula for a cube’s graph representation.
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Characterizations of Planar Graphs

Kuratowski’s Theorem: A graph is planar if and only if it does not
contain a subgraph homeomorphic to K5 or K3,3.
Wagner’s Theorem: A graph is planar if and only if it does not have K5

or K3,3 as a minor.
Exercise:

Show that K4 is planar but K5 is not.

Prove that every tree is planar.

SDB PCD Planarity of Graphs 4 / 50



Planarity Testing
Kuratowski’s Theorem: A graph is non-planar if and only if it contains a
subgraph homeomorphic to K5 or K3,3.
Wagner’s Theorem: A graph is planar if and only if it does not have K5

or K3,3 as a minor.

A

B

C

DE

A

B

C

D

E

F

Exercise:

Prove that K5 is non-planar using Euler’s formula.

Show that K3,3 is not planar.

Find a minor in a given graph that makes it non-planar.

SDB PCD Planarity of Graphs 5 / 50



Kuratowski’s Theorem vs. Wagner’s Theorem on Planarity
Key Differences:

Homeomorphism (Kuratowski’s Theorem): - A graph is
homeomorphic to another if it can be obtained by subdividing edges.
- Kuratowski’s theorem looks for these subdivisions explicitly.

Minors (Wagner’s Theorem): - A minor is obtained by deleting
edges and contracting edges. - Wagner’s theorem allows contractions,
making it more general.

Example: A Graph Containing
K3,3 as a Minor

A

B

C

D

E

F

Exercise:

Find a graph that is non-planar
by Kuratowski’s theorem but
not by Wagner’s theorem.

Prove that every graph with a
K3,3 minor is non-planar.
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Planarity Testing Algorithms

Key Algorithms:

Kuratowski’s Theorem Approach: Check for K5 and K3,3

subgraphs.

Hopcroft-Tarjan Planarity Algorithm: Linear-time planarity testing.

PQ-Tree Algorithm: Used for practical graph drawing.

Hopcroft and Tarjan’s Algorithm Steps:

Uses DFS to test planarity in O(n) time.

Identifies and removes Kuratowski subgraphs.

Exercise:

Apply Hopcroft and Tarjan’s Algorithm to test if a given graph is
planar.

Apply the Hopcroft-Tarjan algorithm to test the planarity of a given
graph.
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The Five-Color and Four-Color Theorems

Five-Color Theorem: Every planar graph can be properly colored with at
most 5 colors.
Four-Color Theorem (Appel-Haken 1976): Every planar graph can be
colored with at most 4 colors, but proof requires computer verification.
Exercise: Prove the Five-Color Theorem using induction.
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5-Color Theorem

Theorem: Every planar graph can be colored with at most 5 colors.
Sketch of Proof:

Uses induction and reducible configurations.

Stronger than the 6-color theorem but weaker than the 4-color
theorem.

Base case: A simple cycle is 5-colorable.

Inductive step: Remove a vertex, color remaining graph, reinsert
vertex with valid coloring.

Exercise:

Construct a planar graph that requires exactly 5 colors.

Prove that every planar graph is 6-colorable.
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Key Theorems on Planarity

Key Theorems:

Euler’s Formula: V − E + F = 2 for connected planar graphs.

Kuratowski’s Theorem: A graph is planar iff it has no K5 or K3,3

subgraphs.

Wagner’s Theorem: A graph is planar iff it has no K5 or K3,3

minors.

Five-Color and Four-Color Theorems: Planar graphs can be
colored with at most 4 colors.

Key Algorithms:

Hopcroft-Tarjan planarity testing.

PQ-tree method for efficient planarity verification.

Exercises:

Prove that every planar graph has a vertex of degree at most 5.

Find an example of a non-planar graph and explain why.
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Graph Connectivity – Basics

Definitions:

A graph is connected if there is a path between any two vertices.

Vertex connectivity κ(G ) is the minimum number of vertices
needed to disconnect the graph.

Edge connectivity λ(G ) is the minimum number of edges needed to
disconnect the graph.

Exercise:

Find κ(G ) and λ(G ) for small graphs.
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Introduction to Graph Connectivity

Definition: A graph is connected if there exists a path between every
pair of vertices.
Types of Connectivity:

Vertex Connectivity (κ(G )): Minimum number of vertices whose
removal disconnects the graph.

Edge Connectivity (λ(G )): Minimum number of edges whose
removal disconnects the graph.

Example: A Connected Graph

A

B

C

D

Exercise:

Find the vertex and edge
connectivity of the graph.

Construct a disconnected graph
with at most 5 vertices.
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Menger’s Theorem

Theorem: The vertex connectivity κ(G ) is equal to the maximum number
of internally disjoint paths between any two vertices.
Exercise:

Prove Menger’s theorem for small graphs.

Identify disjoint paths in a given connected graph.
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Menger’s Theorem on Connectivity

Theorem: The vertex connectivity κ(G ) is equal to the maximum number
of pairwise internally disjoint paths between any two vertices.
Edge Version: The edge connectivity λ(G ) is the maximum number of
edge-disjoint paths between two vertices.
Example:

A

B

C

D

Exercise: Find the number of pairwise internally disjoint paths between A
and C .
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Whitney’s Theorem on Connectivity

Theorem: If a graph is k-connected, then there exists a cycle passing
through any k vertices.
Implications:

Higher connectivity ensures larger cycles.

Used in network resilience analysis.

Exercise: Construct a 3-connected graph and find a cycle that passes
through three vertices.
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Edge Connectivity Theorem

Theorem: A graph with edge connectivity λ(G ) ≥ k remains connected
after removing any k − 1 edges.
Exercise:

Show that λ(Kn) = n − 1.

Find a graph where λ(G ) < κ(G ).
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Advanced Graph Connectivity – k-Connected Graphs

Definition: A graph is k-connected if it remains connected after
removing fewer than k vertices.
Theorem: Every k-connected graph contains a cycle of length at least
k + 1.
Exercise:

Construct a 3-connected graph and verify its properties.
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Expansion Properties and Connectivity

Definition: A graph is an expander if small vertex sets have many
neighbors.
Cheeger’s Inequality:

h(G ) ≤ 2λ2(G ),

where h(G ) is the edge expansion and λ2(G ) is the second smallest
eigenvalue of the Laplacian.
Exercise: Compute the Laplacian matrix of a small connected graph and
find λ2(G ).
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Algorithms for Testing Connectivity

Common Algorithms:

Breadth-First Search (BFS): Used for testing connected
components.

Depth-First Search (DFS): Efficiently finds articulation points.

Tarjan’s Algorithm: Finds strongly connected components in
O(V + E ).

Stoer-Wagner Algorithm: Computes global min-cut for edge
connectivity.

Exercise: Implement BFS and DFS on a sample graph and determine its
connectivity.

SDB PCD Connectivity in Graphs 19 / 50



Summary of Key Theorems on Graph Connectivity

Key Theorems:

Menger’s Theorem: Relates vertex/edge connectivity to disjoint
paths.

Whitney’s Theorem: High connectivity implies large cycles.

Cheeger’s Inequality: Expansion properties influence connectivity.

Key Algorithms:

BFS and DFS for testing connectivity.

Tarjan’s algorithm for strongly connected components.

Stoer-Wagner algorithm for edge connectivity.

Exercises:

Prove Menger’s theorem for small graphs.

Compute the connectivity of a real-world network graph.
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Basic Concepts of Directed Graphs

Definition: A directed graph (digraph) consists of vertices connected by
directed edges.
Key Terms:

Out-degree: Number of edges leaving a vertex.

In-degree: Number of edges entering a vertex.

Underlying Graph: The undirected version of a digraph.
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Eulerian Directed Graphs

Definition: A directed graph is Eulerian if it contains an Eulerian circuit,
a closed walk that visits every edge exactly once.
Theorem (Necessary and Sufficient Condition): A directed graph G
has an Eulerian circuit if and only if:

G is strongly connected.

Every vertex has equal in-degree and out-degree.

A

B

C

D

Exercise:

Check if the given directed
graph is Eulerian.

Construct a directed Eulerian
graph with 5 vertices.
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Algorithm for Finding an Eulerian Circuit

Fleury’s Algorithm (Modified for Directed Graphs):

Step 1: Start at any vertex with nonzero out-degree.

Step 2: Follow edges one by one, removing them as they are used.

Step 3: Avoid bridges unless necessary.

Step 4: Continue until all edges are used.

Exercise:

Apply Fleury’s algorithm to a directed Eulerian graph.

Modify Fleury’s algorithm to work for semi-Eulerian digraphs.
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Key Theorems and Results – Eulerian Directed Graphs
Fundamental Theorems:

Euler’s Theorem (Directed Version): A directed graph has an Eulerian circuit if
and only if it is strongly connected and every vertex has equal in-degree and
out-degree.

Necessary Condition for an Eulerian Path: A directed graph has an Eulerian

path (but not necessarily a circuit) if:

▶ At most one vertex has out-degree− in-degree = 1.
▶ At most one vertex has in-degree− out-degree = 1.
▶ All other vertices have equal in-degree and out-degree.

Strong Connectivity and Eulerian Circuits: If a directed graph contains an
Eulerian circuit, it must be strongly connected.

Fleury’s Algorithm (Adaptation for Digraphs): An Eulerian circuit can be
constructed by repeatedly traversing non-bridge edges.

De Bruijn Graphs: Certain directed graphs (like De Bruijn graphs) always contain
Eulerian circuits, useful in DNA sequencing.

Exercise:

Prove why strong connectivity is necessary for an Eulerian circuit.

Construct a directed graph with an Eulerian path but no Eulerian circuit.
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Hamiltonian Directed Graphs

Definition: A directed graph is Hamiltonian if it contains a Hamiltonian
cycle, a cycle that visits every vertex exactly once.
Dirac’s Theorem for Digraphs: If a strongly connected directed graph
with n vertices satisfies:

For every vertex v , d+(v), d−(v) ≥ n

2
,

then G has a Hamiltonian cycle.
Example: A Hamiltonian Digraph

A

B

C

D

Exercise:

Verify Dirac’s theorem on a
directed graph with 6 vertices.

Find a directed graph that is not
Hamiltonian.

Identify a Hamiltonian cycle in
the given digraph.
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Algorithm for Finding a Hamiltonian Path

Backtracking Algorithm:

Step 1: Start at an arbitrary vertex.

Step 2: Try extending the path by visiting an unvisited vertex.

Step 3: If all vertices are visited exactly once, return the path.

Step 4: If a dead-end is reached, backtrack.

Exercise:

Implement the Hamiltonian path algorithm for a small directed graph.

Show an example where the algorithm fails.
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Key Theorems and Results – Hamiltonian Directed Graphs
Fundamental Theorems:

Dirac’s Theorem (Directed Version): A strongly connected directed graph with
n vertices has a Hamiltonian cycle if for all v : d+(v), d−(v) ≥ n

2
.

Ghouila-Houri Theorem: If G is a directed graph where: d+(v) + d−(v) ≥ n for
every vertex v , then G has a Hamiltonian cycle.

Tournament Hamiltonicity: Every tournament has a Hamiltonian path. A
strongly connected tournament has a Hamiltonian cycle.

Chvátal’s Theorem (Generalization for Digraphs): A digraph satisfies a
degree-based condition for Hamiltonicity if: k ≥ n/2 ⇒ d+(v) + d−(w) ≥ n for
any distinct vertices v ,w .

NP-Completeness of Hamiltonian Cycle Problem: Finding a Hamiltonian cycle
in a directed graph is NP-complete.

Ore’s Theorem for Directed Graphs: If d+(u) + d−(v) ≥ n for all non-adjacent
pairs, then the digraph has a Hamiltonian cycle.

Exercise:

Apply Dirac’s theorem to verify Hamiltonicity in a given digraph.

Construct a tournament that has a Hamiltonian cycle.
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Introduction to De Bruijn Graphs

Definition: A De Bruijn graph B(k, n) is a directed graph whose vertices
represent sequences of length n over an alphabet of size k , with edges
denoting shifts of these sequences.
Example: B(2, 3) represents all binary sequences of length 3.
Key Properties:

Each vertex has exactly k incoming and k outgoing edges.

It has an Eulerian circuit if and only if it is strongly connected.

It has a Hamiltonian cycle (de Bruijn sequence) covering all length-n
sequences.

Exercise:

Construct the De Bruijn graph B(3, 2) for ternary strings of length 2.
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Construction of De Bruijn Graphs (Example B(2, 3))
Example: The De Bruijn graph B(2, 3) consists of:

Vertices: All binary strings of length 3 ({000, 001, 010, 011, 100,
101, 110, 111}).
Directed edges: Connecting a sequence to the next by shifting left
and appending a bit.

000

001

010

011

100

101

110 111

Exercise:

Verify that every node has in-degree and out-degree 2.
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Properties of De Bruijn Graphs

Key Properties:

Each vertex represents a unique sequence of length n.

Each vertex has exactly k incoming and k outgoing edges.

It has an Eulerian circuit if and only if it is strongly connected.

It has a Hamiltonian cycle (de Bruijn sequence) covering all length-n
sequences.

The total number of edges is kn, and the total number of vertices is
kn−1.

Exercise:

Prove that B(k , n) has an Eulerian circuit.

Show that B(k, n) has a Hamiltonian path.
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Eulerian and Hamiltonian Properties of De Bruijn Graphs

Eulerian Property: A De Bruijn graph is Eulerian since every vertex has
equal in-degree and out-degree.
Hamiltonian Property: De Bruijn graphs contain a Hamiltonian cycle
(de Bruijn sequence), which visits every possible sequence exactly once.
Theorem: The de Bruijn sequence of order n over an alphabet of size k
corresponds to a Hamiltonian cycle in B(k , n).
Exercise:

Find a de Bruijn sequence for B(2, 3).

Prove that every Eulerian circuit in B(k , n) can be transformed into a
de Bruijn sequence.

SDB PCD Directed Graphs Revisited De Bruijn Graphs 31 / 50



Applications of De Bruijn Graphs

Key Applications:

DNA Sequencing: Used to reconstruct genome sequences by
aligning k-mers.

Networking: De Bruijn graphs are used for efficient routing in
peer-to-peer networks.

Cryptography: De Bruijn sequences help in key generation and
secure communications.

Example: DNA Assembly Using De Bruijn Graphs

Given DNA reads of length k, construct the De Bruijn graph.

Eulerian paths reconstruct the genome.

Exercise:

Explain why Eulerian paths are preferred over Hamiltonian paths in
DNA sequencing.
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Key Takeaways of De Bruijn Graphs

De Bruijn graphs represent sequences of length n over an alphabet of
size k .

Every De Bruijn graph is Eulerian and has a Hamiltonian cycle.

The de Bruijn sequence corresponds to a Hamiltonian cycle in the
graph.

Applications in DNA sequencing, networking, and cryptography.

Exercises:

Construct B(2, 4) and find its Eulerian circuit.

Find the shortest de Bruijn sequence for k = 3, n = 2.
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Relationship Between Eulerian and Hamiltonian Directed
Graphs

Key Differences:

Eulerian graphs focus on edges (visiting every edge exactly once).

Hamiltonian graphs focus on vertices (visiting every vertex exactly
once).

Theorem: If a directed graph is both Eulerian and Hamiltonian, then it
must satisfy:

Strong connectivity.

Equal in-degree and out-degree.

Hamiltonian cycle existence conditions.

Exercise:

Find a graph that is Eulerian but not Hamiltonian.

Construct a digraph that is both Eulerian and Hamiltonian.
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Eulerian and Hamiltonian Directed Graphs

Eulerian Directed Graphs:

Contains an Eulerian circuit if it is strongly connected and has equal
in-degree and out-degree.

Fleury’s algorithm helps in finding Eulerian circuits.

Hamiltonian Directed Graphs:

Contains a Hamiltonian cycle if Dirac’s theorem conditions hold.

Finding Hamiltonian paths is NP-complete.

Key Differences:

Eulerian graphs focus on edges, Hamiltonian graphs focus on vertices.

Eulerian circuits are easy to find, while Hamiltonian cycles are difficult
to determine.

Exercises:

Find an example of a digraph that is Eulerian but not Hamiltonian.

Construct a directed graph that satisfies Dirac’s theorem.
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Tournaments in Directed Graphs

Definition: A tournament is a directed graph obtained by assigning a
direction to each edge in a complete graph.
Key Properties:

Every tournament has a directed Hamiltonian path.

A tournament has a unique king (a vertex that can reach all others in
at most two steps).

Example: A Tournament Graph

A

B

C

D

Exercise:

Find a Hamiltonian path in the
tournament.

Identify the king in the
tournament.
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Definition of a King in a Tournament

Definition: In a tournament (a directed complete graph), a vertex v is
called a king if it can reach every other vertex within at most two steps.
Key Observations:

Every tournament has at least one king.

A king may not be the overall winner (dominant vertex).

Example:

A

B

C

D

Exercise: Identify the kings in this tournament.
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Theorem: Every Tournament Has at Least One King

Theorem: In any tournament, there exists at least one king.
Proof Idea:

Consider the vertex with the highest out-degree.

If this vertex is not a king, another vertex must dominate it and be a
king.

Example: Tournament with
Multiple Kings

A

B

C

D

Exercise:

Prove that this tournament has
a king.

Find an example of a
tournament with exactly one
king.
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Dominance Order and Kings in Tournaments

Definition: The dominance order of a tournament arranges vertices such
that if u dominates v , then u is ranked higher.
Key Theorem: If a vertex has the second-highest out-degree, it must be
a king.
Example: A Tournament with a
Clear King

A

B

C

D

Exercise:

Identify the king in this
tournament.

Prove that the second-highest
out-degree vertex is a king.
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Hamiltonian Paths in Tournaments

Theorem: Every tournament has a Hamiltonian path.
Proof Sketch:

Construct a sequence of vertices by repeatedly inserting each vertex in
its correct position.

Since every pair of vertices has a directed edge, a Hamiltonian path
always exists.

Example:

A

B

C

D

Exercise: Find a Hamiltonian path in this tournament.
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Transitivity in Tournaments

Definition: A tournament is transitive if it has a vertex ordering such
that if u → v and v → w , then u → w .
Theorem: A tournament is transitive if and only if it is acyclic.
Example:

A

B

C

D

Exercise: Show that this tournament is transitive.
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Strong Connectivity in Tournaments

Theorem: Every tournament is strongly connected if and only if it
contains a directed cycle.
Proof Sketch:

Every tournament has a directed Hamiltonian path.

If a tournament is not strongly connected, then it must be transitive.

Exercise: Prove that a non-transitive tournament is always strongly
connected.
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Kings in Tournaments – Further Properties

Key Theorems:

A king in a tournament may not be the overall champion.

Every tournament has at least one vertex that is a king.

The second-highest out-degree vertex is always a king.
Example: A Tournament with
Multiple Kings

A

B

C

D

Exercise:

Identify all kings in this
tournament.

Show that the second-highest
out-degree vertex is always a
king.
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Cycles in Tournaments

Key Properties:

Every tournament has at least one directed cycle.

If a tournament is not transitive, then it has a directed triangle.

Example:

A

B

C

Exercise: Find a directed cycle in the given tournament.
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Transitivity in Tournaments

Definition: A tournament is transitive if there exists a total ordering of
the vertices such that for every directed edge (u, v) and (v ,w), we also
have (u,w).
Theorem: A tournament is transitive if and only if it contains no directed
cycles.
Example:

A

B

C

D

Exercise: Prove that a transitive tournament has a unique Hamiltonian
path.
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Dominating Sets in Tournaments

Definition: A dominating set in a tournament is a set of vertices such
that every vertex outside the set is dominated by at least one vertex inside
the set.
Theorem: Every tournament has a dominating set of size at most ⌈n/2⌉.
Proof Idea:

Partition the vertices into two groups: those with high out-degree and
those with low out-degree.

Show that one of these groups dominates the tournament.

Exercise: Find the smallest dominating set in a given tournament.
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Fixed-Point Properties in Tournaments

Definition: A fixed point in a tournament is a vertex v such that for every
subset of vertices containing v , the tournament restricted to that subset
retains its structural properties.
Key Result: In every tournament, there exists at least one vertex with a
unique minimal out-degree.
Implications:

This result helps in ranking-based decision models.

It guarantees that some player in a round-robin tournament is never
the worst performer.

Exercise: Identify a fixed point in a given tournament.
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Key Results on Tournaments
Key Theorems and Results:

Every tournament has a Hamiltonian path.

Transitive tournaments are acyclic.

A tournament is strongly connected if and only if it contains a cycle.

Every tournament has at least one king.

The second-highest out-degree vertex is always a king.

Transitive tournaments correspond to strict total orders.

Every transitive tournament has a unique Hamiltonian path.

A tournament is transitive if and only if it has no directed cycles.

Every tournament has a dominating set of size at most ⌈n/2⌉.
Tournaments have fixed-point properties that influence ranking decisions.

Exercises:

Construct a tournament with exactly one king.

Show that every tournament has a Hamiltonian path.

Identify a tournament that is both transitive and has a king.

Prove that a tournament with an even number of vertices has a dominating set of
size n/2.

Find an example of a tournament that is not transitive but has a unique
Hamiltonian path.
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Larger Tournament Graphs
Test out the Theorems

1

2

3

4

5

6

7

1

23

4

5

6

7 8

9

10
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Comprehensive Summary I

Planar Graphs:

Definition and examples.

Euler’s Formula: V − E + F = 2.

Kuratowski’s Theorem: Non-planar graphs contain K5 or K3,3.

5-Color Theorem: Every planar graph is 5-colorable.

Directed Graphs:

Definitions of in-degree, out-degree, and underlying graph.

Eulerian Directed Graphs: Strongly connected and equal
in-degree/out-degree.

Hamiltonian Directed Graphs: Dirac’s Theorem and NP-completeness.

Tournaments: Every tournament has a Hamiltonian path.
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Graph Homomorphism – Definition & Examples
Definition: A homomorphism from a graph G = (VG ,EG ) to a graph
H = (VH ,EH) is a function:

f : VG → VH

such that if (u, v) ∈ EG , then (f (u), f (v)) ∈ EH .
Key Properties:

Preserves adjacency but does not necessarily preserve
non-adjacency.

Used in graph colorings, constraint satisfaction problems, and
algebraic graph theory.

Example: A homomorphism from K4 to K2.

A

B

C

D

X

Y

Exercise:

Find a homomorphism
from C6 (cycle graph) to
K3.
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Graph Homeomorphism – Definition & Examples

Definition: Two graphs G and H are homeomorphic if one can be
obtained from the other by subdividing edges (inserting degree-2
vertices).
Key Properties:

Topological equivalence of graphs.

Used in planarity testing and graph embeddings.

Example: K3,3 and a homeomorphic version with subdivision.

A B C

D E F

Exercise:

Subdivide edges in K5 to
create a homeomorphic
graph.
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Homeomorphism vs. Homomorphism in Graphs

Key Differences:

Homeomorphism relates to subdivision of edges, while
homomorphism relates to mapping vertices.

Homeomorphism preserves topological structure, while
homomorphism preserves adjacency.

Exercise:

Find a homomorphism from K4 to K2.

Show that two graphs with a subdivision of the same edge are
homeomorphic.
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Graph Minors and Edge Contractions

Definition:

A graph H is a minor of G if it can be obtained from G by deleting
edges, deleting vertices, and contracting edges.

Edge Contraction: Replacing an edge (u, v) with a single vertex
merging u and v .

Example: Contraction of K5 leads to a graph minor.

A

B

C

D

Exercise: Find a minor of K5 by contracting edges.
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Graph Minors and Edge Contractions
Definition: A graph H is a minor of G if it can be obtained from G by:

Deleting vertices,
Deleting edges, or
Contracting edges (merging endpoints into one).

Key Properties:

Graph minors are used in Wagner’s theorem for planarity testing.
The Graph Minor Theorem (Robertson-Seymour) states that any
infinite sequence of graphs contains a minor of another.

Example: K5 contracting to a smaller minor.

A

B

C

D

E

Exercise:

Find a minor of K3,3.SDB PCD Appendix Background 5 / 20



Applications of Graph Minors and Contractions

Why Are Graph Minors Important?

Used in Kuratowski’s Theorem to determine planarity.

Graph Minor Theorem (Robertson-Seymour Theorem) states
that for any infinite sequence of graphs, one is a minor of another.

Edge contractions help in network simplifications.

Exercise: Apply edge contractions to simplify a given network graph.
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Summary of Graph Transformations

Key Concepts:

Homomorphism: Maps vertices while preserving adjacency.

Homeomorphism: Graphs equivalent under edge subdivisions.

Minors: Obtained by vertex/edge deletions and contractions.

Contractions: Merging adjacent vertices into one.

Key Applications:

Planarity testing (Kuratowski’s & Wagner’s theorems).

Graph transformations in network reductions.

Algebraic graph theory and constraint problems.

Exercises:

Show that every homeomorphic transformation is a minor but not vice
versa.

Construct an example where homomorphism exists but
homeomorphism does not.
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Fáry’s Theorem – Planar Graphs with Straight-Line Edges
Theorem: Every planar graph can be drawn in the plane with straight-line
edges.
Proof Idea:

Uses induction on the number of vertices.

Applies triangulation and barycentric placement.

Example:

A

B

C

D

⇐⇒ A

B

C

D

⇐⇒ A

B

C

D

Exercise:

Draw a planar graph using only straight-line edges.
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Whitney’s Duality Theorem

Theorem: Every connected planar graph has a unique dual graph (up to
isomorphism).
Key Concepts:

The dual graph G ∗ is formed by placing a vertex in each face of G .

Edges of G ∗ correspond to edges crossing between faces in G .
Example: Dual of a Planar Graph

A

B

C

D

Exercise:

Find the dual of a given planar
graph.

Prove that the dual of a tree is
always a cycle.
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Crossing Number and Beyond Planarity

Definition: The crossing number cr(G ) of a graph G is the minimum
number of edge crossings required in any drawing of G .
Key Theorem (Turán’s Brick Factory Problem):

cr(Kn) ≥
1

4

⌊n
2

⌋ ⌊n − 1

2

⌋
Exercise:

Find the crossing number of K5 and K3,3.

Show that every planar graph has cr(G ) = 0.
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Introduction to the 4-Color Theorem

Statement: Every planar graph can be properly colored using at most 4
colors.
Why is this Important?

Solves the problem of coloring maps on a plane.

First major theorem proved using a computer.

Exercise: Show that the Petersen graph is non-planar, so the 4-Color
Theorem does not apply.
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Historical Background of the 4-Color Theorem

Key Milestones:

1852 – First observed by Francis Guthrie while coloring maps.

1879 – Alfred Kempe published an incorrect proof.

1890 – Percy Heawood corrected Kempe’s mistake but proved the
5-Color Theorem.

1976 – Kenneth Appel and Wolfgang Haken proved the theorem using
a computer.

Exercise: Research and summarize why Appel and Haken’s proof was
controversial.
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Proof Idea – Appel & Haken’s Approach

Key Strategy:

Reduce the problem to a finite set of ”unavoidable configurations.”

Use a computer to check all cases.

Challenges:

Proof relied on 1,200 hours of computer calculations.

Initially criticized due to lack of human-verifiable steps.

Exercise: Explain why reducible configurations are important in proving
the 4-Color Theorem.
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Implications & Applications

Why Does This Matter?

Graph Theory: Strengthens understanding of planar graphs.

Map Coloring: Helps in real-world geographical problems.

Computer Science: Led to the development of automated theorem
proving.

Exercise: Find a real-world problem where 4-coloring is applicable.
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Example: A 4-Colorable Planar Graph

Graph Representation:

A

B

C

D

Exercise: Try coloring the graph with only 3 colors. Is it possible?
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k-Connected Graphs and Dirac’s Theorem

Definition: A graph is k-connected if it remains connected after removing
any k − 1 vertices.
Dirac’s Theorem: A k-connected graph with n vertices has a cycle of
length at least k + 1.
Exercise:

Show that Kn is (n − 1)-connected.

Construct a 3-connected graph and find its largest cycle.

SDB PCD Appendix More on Connectivity 16 / 20



Global and Local Connectivity Relations

Menger’s Theorem: The vertex connectivity κ(G ) is equal to the
maximum number of internally disjoint paths between any two vertices.
Exercise:

Find the connectivity of a given graph.

Prove Menger’s theorem for a simple case.
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Expander Graphs and Spectral Graph Theory

Definition: An expander graph is a sparse graph that has strong
connectivity properties.
Cheeger’s Inequality:

h(G ) ≤ 2λ2(G )

where h(G ) is the edge expansion and λ2(G ) is the second smallest
eigenvalue of the Laplacian matrix.
Exercise:

Compute the Laplacian matrix of a given graph.

Show how eigenvalues relate to connectivity.
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Edge Disjoint Spanning Trees

Theorem: A graph G contains k edge-disjoint spanning trees if and only
if it remains connected after removing any k − 1 edges.
Exercise:

Find two edge-disjoint spanning trees in a given graph.

Prove that a 3-connected graph has at least two edge-disjoint
spanning trees.

SDB PCD Appendix More on Connectivity 19 / 20



Summary

Planar Graphs:

Fáry’s Theorem – Planar graphs with straight-line edges.

Whitney’s Duality – Relationship between graphs and their duals.

Crossing Number – Generalization of planarity.

Graph Connectivity:

k-Connected Graphs – Dirac’s Theorem.

Menger’s Theorem – Relationship between paths and connectivity.

Expander Graphs – Spectral properties and applications.

Edge Disjoint Spanning Trees – Structural connectivity properties.
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