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Introduction to Graph Coloring
What is Graph Coloring?

Assigning colors to vertices or edges of a graph such that certain
constraints are satisfied.

The most common type: Vertex Coloring, where adjacent vertices
must have different colors.

Applications:
Scheduling Problems: Assigning exam slots to students avoiding conflicts.

Register Allocation: Optimizing CPU register assignments in compilers.

Wireless Networks: Frequency assignment to avoid interference.

Example:

A

B

C

D

Exercise:

Find the minimum number of
colors required to properly color
the graph in the example.
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Definition of Graph Coloring
Graph Coloring: Assigning colors to vertices or edges such that no two
adjacent elements share the same color.
Types of Coloring:

Vertex Coloring: No two adjacent vertices have the same color.

Edge Coloring: No two adjacent edges have the same color.

Face Coloring: In planar graphs, adjacent regions (faces) are colored
differently.

Example: Improper Vertex Coloring

A

B

C

D

Exercise:

What will be a proper coloring
for this graph?

What is the minimum number
of colors required for this graph?
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B

C

D
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Importance and Applications of Graph Coloring

Why is Graph Coloring Important?

Used to solve real-world problems where conflicts must be avoided.

Helps in optimization, scheduling, and resource allocation.

Applications:

Scheduling Problems: - Exams: Ensure that no two exams with
common students are scheduled at the same time. - Employee shifts:
Assign different work shifts avoiding conflicts.

Frequency Assignment in Wireless Networks: - Assigning different
frequencies to nearby towers to avoid interference.

Register Allocation in Compilers: - Assigning CPU registers to
variables in a program efficiently.

Exercise:

Can you think of a real-world problem that can be solved using graph
coloring?
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Basic Definitions and Notation

Graph Coloring Terminology:

A proper coloring of a graph G = (V ,E ) is a function c : V → C
such that if (u, v) ∈ E , then c(u) ̸= c(v).

The chromatic number χ(G ) is the smallest number of colors
needed for a proper coloring.

A graph is k-colorable if it can be colored with at most k colors.

Examples:

Kn requires n colors.

A bipartite graph has χ(G ) = 2.

Exercise:

Find the chromatic number of a cycle Cn for different values of n.
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Basic Theorems on Graph Coloring

Theorem 1: Upper Bound on Chromatic Number

If G is a graph with maximum degree ∆(G ), then:

χ(G ) ≤ ∆(G ) + 1.

Proof: Use the greedy coloring algorithm.

Theorem 2: Bipartite Graphs

A graph is bipartite if and only if it is 2-colorable.

Exercise:

Prove that a tree is always 2-colorable.
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Example of a 3-Colorable Graph

Example: Graph Requiring 3 Colors

A

B

C

D

E

Observation:

The chromatic number of this graph is 3.

Exercise:

Try to color this graph using only two colors. What goes wrong?

SDB GCM Introduction 7 / 78



Outline

1 Introduction

2 Basic Equations of Graph Coloring

3 Greedy Coloring

4 Vertex Coloring

5 Chromatic Number

6 Matching

7 Chordal Graph

8 Brook’s Theorem

9 Edge Coloring



Relationship Between Chromatic Number and Independent
Sets
Definition: An independent set in a graph G = (V ,E ) is a set of
vertices such that no two are adjacent.
Theorem: Let α(G ) be the size of the largest independent set in G . Then:

χ(G ) ≥ |V |
α(G )

Proof:

Every color class in a proper coloring forms an independent set.

If we partition V into k independent sets, each of size at most α(G ),
then:

k ≥ |V |
α(G )

Exercise:

Find the chromatic number of a graph where |V | = 10 and the largest
independent set has size 4.
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Upper and Lower Bounds on Chromatic Number

Lower Bound:
χ(G ) ≥ ω(G )

where ω(G ) is the size of the largest clique.
Upper Bound:

χ(G ) ≤ ∆(G ) + 1

where ∆(G ) is the maximum degree of G .
Implications:

For complete graphs, χ(Kn) = n.

For bipartite graphs, χ(G ) ≥ 2.

Exercise:

Find the chromatic number of a graph with ω(G ) = 4 and ∆(G ) = 5.
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Theorem – Chromatic Number and Maximum Degree
Theorem: Every graph G with maximum degree ∆ satisfies:

χ(G ) ≤ ∆+ 1

Proof (Greedy Coloring):

Number the vertices arbitrarily as v1, v2, . . . , vn.
Assign the smallest available color to each vertex, ensuring no two
adjacent vertices share the same color.
Since a vertex has at most ∆ neighbors, at most ∆ colors are
occupied.
Therefore, vi can be assigned a color at most ∆ + 1.

Example:

A

B

C

D

E

Exercise:

Apply the greedy algorithm to
color a graph with ∆ = 4.
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Theorem – Chromatic Number of Bipartite Graphs

Theorem: Every bipartite graph has a chromatic number of at most 2.
Proof:

A bipartite graph consists of two disjoint sets of vertices V1 and V2

such that every edge joins a vertex in V1 to one in V2.

Color all vertices in V1 with one color and all in V2 with another.

Since no two adjacent vertices are in the same set, the coloring is
valid.

Example:

v1

v2

v3

v4

Exercise:

Show that a cycle Cn is bipartite
if and only if n is even.
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Example – Chromatic Number of a Cycle Graph
Theorem: The chromatic number of a cycle graph Cn is:

χ(Cn) =

{
2, if n is even

3, if n is odd

Proof:

If n is even, we can alternately color the vertices with two colors.

If n is odd, a vertex will always be adjacent to two vertices of the
different colors, requiring an extra color.

Example:

v1
v2

v3
v4

v5

Exercise:

Prove that any even-length
cycle graph is bipartite.
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Example – Chromatic Number of a Wheel Graph
Theorem: The chromatic number of a wheel graph Wn is:

χ(Wn) =

{
4, if n is even

3, if n is odd

Proof:

The central vertex requires its own color.

The surrounding cycle Cn requires 2 or 3 colors based on parity.

If Cn requires 3 colors, the center vertex forces a fourth color.
Example (Wheel Graph W7):

vc

v1

v3

v5

v2

v4

v6

Exercise:

Compute χ(W7) and compare it
with χ(W6).
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Example – Chromatic Number of a Complete k-Partite
Graph
Theorem: The chromatic number of a complete k-partite graph
Kn1,n2,...,nk is: χ(G ) = k .
Proof:

Each independent set requires only one color.
Since all vertices in different sets are adjacent, each set must be
colored differently.

Example (Tripartite Graph K3,3,3):

A1 B1 C1

A2 B2 C2

A3 B3 C3 Exercise:

Show that any bipartite graph is
a special case of a complete
k-partite graph.
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Greedy Coloring Algorithm

Algorithm: Greedy Coloring

Given a graph G = (V ,E ), order the vertices arbitrarily.

Assign colors sequentially:
1 Assign the first vertex the first color.
2 For each subsequent vertex, assign the smallest available color that

does not conflict with its neighbors.
3 Repeat until all vertices are colored.

Example: Greedy Coloring on a
Graph

A

B

C

D

Exercise:

Apply the greedy algorithm to
the given graph.

Does the ordering of vertices
affect the result?
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Theorem – Greedy Coloring Provides an Upper Bound on
χ(G )
Theorem: For any graph G with maximum degree ∆(G ),

χ(G ) ≤ ∆(G ) + 1.

Proof:

Each vertex has at most ∆(G ) neighbors.

At any step, at most ∆(G ) colors are occupied.

The vertex can be assigned at most ∆(G ) + 1 colors.

Thus, the chromatic number does not exceed ∆(G ) + 1.
Example: Upper Bound Verification

A

B

C

D

E

Exercise:

Find ∆(G ) and verify
χ(G ) ≤ ∆(G ) + 1.

Is this bound always tight?
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Worst-case Performance and Limitations of Greedy
Coloring
Limitations of Greedy Coloring:

The algorithm depends on the ordering of vertices.

It does not always find the optimal chromatic number.

Some graphs require χ(G ) = ω(G ), but greedy coloring may use
more.

Worst-Case Example:

Consider an order-sensitive case, like a path or cycle graph.

Greedy coloring may use significantly more colors than needed.
Example: Bad Ordering – 1, 4, 2, 3, 5, 6

12

3

4 5

6

Exercise:

Apply greedy coloring on
C5,C6.

Try different vertex
orderings and compare
results.
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Bad Ordering in Greedy Coloring

Greedy coloring is a simple and intuitive algorithm for coloring graphs.

However, the ordering of vertices can greatly affect the quality of the
coloring.

Consider a crown graph with eight vertices, formed by removing
perfect matching edges from a complete bipartite graph.

Plain Crown Graph with n = 8:

A B C D

E F G H

Optimal Coloring with 2 colors: A, B, C, D, E,
F, G, H

A B C D

E F G H

Greedy Coloring with 4 colors: A, E, B, F, C,
G, D, H

A B C D

E F G H

Conclusion: The greedy algorithm’s
performance is highly dependent on vertex
ordering, sometimes requiring more than the
optimal number of colors.
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Definition of Vertex Coloring

Definition: A proper vertex coloring of a graph G = (V ,E ) is an
assignment of colors to vertices such that no two adjacent vertices share
the same color.
Chromatic Number: The smallest number of colors required for a proper
coloring is called the chromatic number χ(G ).
Example: Coloring a Cycle C5

2

4

1

3

5

Exercise:

What is the chromatic number
of C5?

What happens if Cn is even?
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Chromatic Number of Special Graphs

Theorem:

χ(Kn) = n for a complete graph.

χ(Cn) = 2 if n is even, 3 if n is odd.

χ(G ) ≤ ∆(G ) + 1, where ∆(G ) is the maximum degree.

Example: Chromatic Number of
K4

1

2

3

4

Exercise:

Compute χ(K5).

What is χ(C6) and χ(C7)?
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Mycielski’s Theorem

Theorem (Mycielski’s Construction): Given a graph G with chromatic
number χ(G ), we can construct a new graph G ′ such that:

χ(G ′) = χ(G ) + 1

Remark: If G is triangle free, then G ′ remains triangle-free.
Example: Mycielski’s Construction

A

B

C

D

E

Exercise:

Construct G ′ from C5

using Mycielski’s
method.

What is χ(G ′) if
χ(G ) = 3?
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Mycielski’s Theorem
Theorem (Mycielski’s Construction): Given a graph G with chromatic
number χ(G ), we can construct a new graph G ′ such that:

χ(G ′) = χ(G ) + 1

Remark: If G is triangle free, then G ′ remains triangle-free.
Example: Mycielski’s Construction

A

B

C

D

Ea

b

c

d

e

z

Exercise:

Construct G ′ from C5

using Mycielski’s
method.

What is χ(G ′) if
χ(G ) = 3?
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Mycielski’s Theorem

Theorem: Given a graph G with chromatic number χ(G ), we can
construct a new graph G ′ such that:

χ(G ′) = χ(G ) + 1

while keeping G ′ triangle-free.
Motivation:

Used to construct graphs with arbitrarily high chromatic numbers.

Provides counterexamples to conjectures relating chromatic number
and clique number.

Exercise:

What is the chromatic number of C5?

Can we apply Mycielski’s construction to increase it?
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Mycielski’s Construction Process

Given: A graph G with vertex set V (G ) and edge set E (G ).
Step 1: Create a Copy of G

Add a new vertex uv for each v ∈ V (G ).

The new vertices form a set U = {uv | v ∈ V (G )}.
Step 2: Connect Copies

For each edge (v ,w) ∈ E (G ), add edges (uv ,w) and (uw , v).

Step 3: Introduce a New Vertex z

Connect z to all vertices in U.

Exercise:

Construct G ′ from C5.
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Example: Mycielski’s Construction on C5

Original Graph C5

1

2

3

4

5

Transformed Graph C ′
5

1

2

3

4

5

u1

u2

u3

u4

u5

zz
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Proof of Mycielski’s Theorem

Step 1: G ′ is Triangle-Free

The newly added edges connect U to V (G ), but no cycles of length 3
are introduced.

Step 2: Coloring Argument

Assume χ(G ) = k, meaning we need at least k colors for G .

Assign the same colors to V (G ) in G ′.

Each vertex uv in U takes the same color as v .

The new vertex z must take a new color.

This increases χ(G ′) by exactly 1.

Conclusion:
χ(G ′) = χ(G ) + 1
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Relationship Between Chromatic Number & Cliques

Definition:

The chromatic number χ(G ) is the minimum number of colors
required to properly color G .

The clique number ω(G ) is the size of the largest complete
subgraph (clique) in G .

Key Observation: - Since all vertices in a clique must have distinct
colors, we always have:

χ(G ) ≥ ω(G ).

Example: Clique in a Graph

A

B

C

D

Exercise:

Find ω(G ) and χ(G ).

Can χ(G ) > ω(G )?
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Theorem – χ(G ) ≥ ω(G )
Theorem: For any graph G ,

χ(G ) ≥ ω(G ).

Proof:

Consider the largest clique Kω(G) in G .

Since all vertices in the clique must have different colors, at least
ω(G ) colors are required.

Thus, the chromatic number cannot be less than the clique number.
Example: Complete Graph K4

1

2

3

4

Exercise:

Show that χ(Kn) = n.

Compute ω(G ) and χ(G ) for a
cycle C6.
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Finding Chromatic Numbers of Graphs

Common Techniques:

Identify the largest clique ω(G ).

Apply upper bounds such as χ(G ) ≤ ∆(G ) + 1.

Use heuristic algorithms (e.g., Greedy Coloring).

Example: Finding χ(G )

A

B

C

D

E

Exercise:

Find ω(G ) for this graph.

Compute χ(G ) using a coloring
algorithm.
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Definition of Matchings in Graphs
Definition: A matching in a graph G = (V ,E ) is a set M ⊆ E such that
no two edges in M share a common vertex.
Types of Matchings:

Maximum Matching: A matching with the largest possible number
of edges.
Perfect Matching: A matching that covers all vertices.
Maximum Cardinality Matching: A matching with the highest
number of edges among all matchings.

Example:

A

B

C

D

Exercise:

Find a maximum matching in a
given bipartite graph.
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Saturated and Unsaturated Vertices in a Matching

Definitions:

A vertex v is saturated by a matching M if v is an endpoint of some
edge in M.

A vertex is unsaturated if it does not belong to any matched edge.

Example:

A B C

D E F

Exercise: Identify the saturated and unsaturated vertices in the given
graph.
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Alternating and Augmenting Paths

Definitions:

An M-alternating path is a path in which edges alternate between
matched and unmatched edges.

An M-augmenting path is an M-alternating path that starts and
ends at an unsaturated vertex.

Theorem: A matching M is maximum if and only if there is no
M-augmenting path.
Exercise: Find an M-augmenting path in the given graph.
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Maximum Number of Matchings in a Complete Graph
Theorem: The number of perfect matchings in a complete graph K2n is:

M(K2n) =
(2n)!

2nn!
.

Proof Sketch:

Consider a complete graph K2n with 2n vertices.
We aim to count the ways to pair up 2n vertices into disjoint edges.
First, arrange all 2n vertices in a sequence: (v1, v2, ..., v2n).
The first vertex v1 can be paired with any of the remaining 2n − 1
vertices.
The next available vertex can then be paired with any of 2n − 3
choices, and so on.
This results in:

(2n − 1)(2n − 3)(2n − 5) . . . 1 =
(2n)!

2nn!
.

Exercise:

Derivation of Maximum Matching Count in Kn where n is odd.
Compute M(K6) and M(K7).
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Symmetric Difference of Matchings – Definition
Definition: Given two matchings M1 and M2 in a graph G , their
symmetric difference is defined as:

M1 ⊕M2 = (M1 ∪M2) \ (M1 ∩M2).

This consists of edges that appear in exactly one of the two matchings.
Properties:

The symmetric difference forms a collection of disjoint alternating
cycles and paths.

These paths are called augmenting paths if they start and end at
unmatched vertices.

The presence of an augmenting path indicates that M1 is not
maximum.

M1 ⊕M2 consists of alternating cycles and paths.

If M2 is a maximum matching, an M1-augmenting path exists.

Exercise: Compute M1 ⊕M2 for matchings M1 and M2 of some Graph.
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Example of Symmetric Difference of Matchings

Example: Consider two matchings M1 (red edges) and M2 (blue edges) in
the same graph.
Graph with Two Matchings

A

B

C

D

Analysis:

Symmetric difference contains
alternating cycles and paths.

Identify the augmenting path
that can increase the matching.
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Hall’s Marriage Theorem
Theorem: A bipartite graph G = (X ,Y ,E ) has a perfect matching if and
only if for every subset S ⊆ X ,

|N(S)| ≥ |S |

where N(S) is the neighborhood of S in Y .
Proof Sketch:

If |N(S)| < |S |, then some vertices in S cannot be matched.

If |N(S)| ≥ |S | for all S , then an augmenting path approach ensures a
perfect matching.

Example (Valid Matching in a
Bipartite Graph):

A1 B1

A2 B2

A3 B3
Exercise:

Prove Hall’s condition for a
given bipartite graph.
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Applications of Matchings in Real Life

Matching problems are widely used in:

Marriage Matching – Stable marriage problem.

Job Allocation – Assigning employees to projects.

School Admissions – Assigning students to schools.

Kidney Transplant Matching – Matching donors to recipients in
medical applications.

Example: Stable Marriage Problem

Each participant ranks their preferences.

A matching is stable if there is no pair that prefers each other over
their assigned partners.

Exercise:

Describe a real-world problem that can be modeled using matchings.
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Proof of Hall’s Marriage Theorem

Theorem: A bipartite graph G = (X ,Y ,E ) has a perfect matching if and
only if for every subset S ⊆ X ,

|N(S)| ≥ |S |

where N(S) is the neighborhood of S in Y .
Proof: (By Contradiction)

Suppose G does not have a perfect matching.

Let M be a maximum matching in G .

Define S as the set of unmatched vertices in X .

Let T be the set of vertices in Y matched with S under M.

Since M is a maximum matching, |T | < |S |, contradicting Hall’s
condition.

Conclusion: - If |N(S)| ≥ |S | for all S ⊆ X , then a perfect matching
exists. - Otherwise, some vertices remain unmatched.
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Complex Real-World Examples of Matchings
1. National Kidney Exchange Program

Patients and donors form a bipartite graph.

Edges represent compatible donor-recipient pairs.

Maximum matching helps find the largest number of transplant pairs.

2. College Admissions (Gale-Shapley Algorithm)

Students and colleges form a bipartite graph.

Edges represent valid applications.

A stable matching is sought where no student-college pair would
rather switch.

3. Sports Tournament Scheduling

Teams and available slots form a bipartite graph.

Edge constraints ensure fair scheduling.

Exercise:

Explain how Hall’s Theorem guarantees fair kidney donor matching.
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Augmenting Path Algorithm for Finding Matchings

Definition: An augmenting path is a path in which edges alternate
between being in the matching and not being in the matching.
Algorithm Steps:

Start with an initial matching.

Find an augmenting path.

Flip the edges along the path to increase the matching size.

Repeat until no augmenting path exists.
Example:

A1 B1

A2 B2

A3 B3

Exercise:

Implement the augmenting path
algorithm on a bipartite graph.
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Berge’s Theorem on Augmenting Paths

Theorem: A matching M is maximum if and only if there is no
augmenting path with respect to M.
Proof Idea:

If there is an augmenting path, then flipping the edges along this path
increases the size of M.

If no augmenting path exists, M is already the largest possible
matching.

Exercise: Identify an augmenting path in a given graph and use it to
increase the matching size.
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Other Important Results and Theorems on Matching
König’s Theorem: In a bipartite graph, the size of a maximum
matching is equal to the size of a minimum vertex cover.

Tutte’s Theorem: A graph G has a perfect matching if and only if
for every subset S ⊆ V , the number of odd components in G − S is
at most |S |.
Karp’s Theorem: Finding a maximum matching in general graphs is
in P.

LP Duality & Matching: Maximum matching in bipartite graphs is
solvable using linear programming.

Use in Algorithms:

Edmonds’ Blossom Algorithm: Uses symmetric difference to find
augmenting paths in non-bipartite graphs.

Hopcroft-Karp Algorithm: Alternates between matchings to find
maximum bipartite matchings in O(

√
VE ).

Augmenting Path Heuristic: Iteratively improves matchings using
symmetric difference.

SDB GCM Matching 41 / 78



Minimum Size of a Maximal Matching

Definition: A maximal matching is a matching that cannot be extended
by adding another edge.
Theorem: The minimum size of a maximal matching in a graph G with
maximum matching of size 2k , is at most k .

A

B

C

DE
F

Exercise:

Find the minimum maximal
matching in this graph.

Show that no additional edges
can be added.
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Matching vs. Vertex Cover Size

Theorem: In any graph, the size of every matching is at most the size of
every vertex cover.
Proof Idea:

Each edge in a matching requires at least one vertex in the cover.

Thus, the vertex cover must be at least as large as the matching.

Exercise: Find a graph where the matching size is equal to the minimum
vertex cover.
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Perfect Matching Properties in Trees

Theorem: Every tree has at most one perfect matching.
Proof Sketch:

Trees have no cycles, meaning matchings cannot be rearranged.

If a tree has an odd number of vertices, it cannot have a perfect
matching.

Example: A Tree with a Unique
Perfect Matching

A B C

D

Exercise:

Find the perfect matching in
another tree.

What happens if the tree has an
odd number of vertices?
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Introduction to the Gale-Shapley Algorithm

What is the Gale-Shapley Algorithm?

Also known as the Deferred Acceptance Algorithm.

Solves the Stable Marriage Problem: Given n men and n women,
each with ranked preferences, find a stable matching.

A matching is stable if there is no blocking pair (a man and woman
who prefer each other over their assigned partners).

Key Properties:

Always finds a stable matching.

The output is optimal for the proposing side (men, if men propose).

Exercise:

Why might the Gale-Shapley algorithm be unfair to the non-proposing
side?
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Gale-Shapley Algorithm - Step-by-Step

Algorithm:

Each man proposes to the highest-ranked woman on his list who
hasn’t rejected him.

Each woman tentatively accepts her best offer (if any) and rejects
lower-ranked proposers.

Repeat until every person is matched.

Pseudocode:

1 While there exists an unmatched man:

2 Propose to the highest-ranked woman who hasn’t rejected him.

3 If she is free, she accepts.

4 Otherwise, she chooses the better match.

5 Repeat until all are matched.

Exercise:

Modify the algorithm so that women propose instead of men.
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Example: Solving a Stable Marriage Problem

Given Preferences:
Men’s Preferences

A: [X, Y, Z]

B: [Y, X, Z]

C: [X, Y, Z]

Women’s Preferences

X: [B, A, C]

Y: [C, A, B]

Z: [A, B, C]
Solution (Step-by-Step Matching Process)

Round 1: Men propose to their top choices.

Women choose their preferred match.

Repeat until a stable matching is found.

Exercise: Find a different stable matching by reversing proposal roles.
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Introduction to the Hungarian Algorithm

What is the Hungarian Algorithm?

Solves the Weighted Bipartite Matching problem.

Given a bipartite graph with weights, find a perfect matching that
minimizes (or maximizes) total cost.

Used in job assignment, scheduling, and resource allocation.

Key Idea:

Convert the problem into a cost matrix.

Use row and column reductions to find an optimal assignment.

Exercise:

Why does the Hungarian Algorithm always find an optimal solution?
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Hungarian Algorithm - Step-by-Step

Algorithm Steps:

1 Subtract the smallest element from each row.

2 Subtract the smallest element from each column.

3 Cover all zeros using the minimum number of lines.

4 If the number of lines = n, an optimal assignment exists.

5 If not, adjust the matrix and repeat.

Exercise: Solve the following cost matrix using the Hungarian Algorithm:4 1 3
2 0 5
3 2 2


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Example: Solving a Weighted Matching Problem

Problem: Assign 3 workers to 3 jobs minimizing total cost.
Cost Matrix: 4 1 3

2 0 5
3 2 2


Solution:

Subtract row minimums, then column minimums.

Cover zeros with minimum lines.

If necessary, adjust the matrix and repeat.

Exercise: Solve a similar problem for a 4x4 cost matrix.
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Lower Bound on Matching Size

Theorem: Every graph G with no isolated vertices has a matching of size
at least:

n(G )

1 + 1(G )

where n(G ) is the number of vertices and 1(G ) is the independence
number.
Implications:

Provides a lower bound on the size of a matching.

Useful in analyzing sparse graphs.

Exercise: Calculate the lower bound for different graphs.
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Relations Among Graph Parameters

Key Relations:

Maximum matching (α′),

Minimum vertex cover (β),

Minimum edge cover (β′),

Maximum independent set (α).

Proof of Relation:
α+ β = n, α′ + β′ = n

The relations follow from properties of maximal matchings and vertex
covers in bipartite graphs.
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What is a Chordal Graph?

Definition: A graph is chordal if every cycle of length at least 4 has a
chord (an edge that connects two non-consecutive vertices in the cycle).

Properties:

Every chordal graph has a perfect elimination ordering (PEO).

Can be colored optimally in polynomial time.

Applications: Database optimization, phylogenetics, and sparse
matrix computations.
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Example of a Chordal Graph

A

B

C

D

E

Is this a chordal graph?

- All cycles of length 4 or more contain a chord.
- Example: The cycle A− B − C − D − A has a chord B − D.
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Algorithm: Coloring Chordal Graphs using PEO

Step 1: Find a Perfect Elimination Ordering (PEO)

A vertex ordering v1, v2, . . . , vn such that each vertex and its later
neighbors form a clique.

Step 2: Greedy Coloring on PEO

Process vertices in PEO order.

Assign the smallest available color.

Since later neighbors form a clique, chromatic number = clique
number.

Time Complexity: O(n +m)
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Example: Coloring a Complex Chordal Graph

Step 1: Find PEO

A valid PEO: E ,C ,B,D,A.

Process vertices in this order.

Step 2: Apply Greedy Coloring

E → Blue

C → Red

B → Blue

D → Red

A → Green

A

B

C

D

E

Final Coloring: E:1, C:2, B:1, D:2, A:3
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Introduction to Chordal Graphs

Definition: A graph G is chordal if every cycle of length at least 4 has a
chord (an edge connecting two non-adjacent vertices in the cycle).
Properties of Chordal Graphs:

Every chordal graph has a perfect elimination ordering (PEO).

Chordal graphs can be colored optimally using a greedy algorithm.
Example: A Chordal Graph

A

B

C

D

E

Exercise:

Identify chords in the given
graph.

Determine if the graph is
chordal.
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Algorithm for Coloring Chordal Graphs

Algorithm: Coloring Chordal Graphs Using a PEO

Step 1: Find a perfect elimination ordering (PEO) of the vertices.

Step 2: Color vertices one by one in the order of PEO.

Step 3: Assign the smallest available color to each vertex.
Example: Coloring a Chordal
Graph

A

B

C

D

Exercise:

Find a PEO for the given graph.

Apply the greedy algorithm and
determine χ(G ).
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Proof of Correctness of Chordal Graph Coloring Algorithm

Theorem: A chordal graph G can be colored optimally using a greedy
algorithm on a perfect elimination ordering.
Proof:

Each vertex in the PEO has neighbors forming a clique.

Since the largest clique in a chordal graph has size ω(G ), at most
ω(G ) colors are needed.

The greedy algorithm assigns at most ω(G ) colors.

Conclusion:
χ(G ) = ω(G )
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Brook’s Theorem

Theorem: For a connected graph G that is neither a complete graph nor
an odd cycle, χ(G ) ≤ ∆, where χ(G ) is the chromatic number and ∆ is
the maximum degree of G .

Key Observations:

Complete graphs require ∆ + 1 colors.

Odd cycles require 3 colors.

All other graphs can be colored with at most ∆ colors.
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Examples of Brook’s Theorem

Example 1: Cycle Graph (Odd
and Even)

An odd cycle needs 3 colors.

An even cycle requires only 2
colors.

Example 2: Star Graph

A star graph requires only 2
colors despite high degree.

A

B

C

D
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Proof of Brook’s Theorem

Proof Strategy:

Consider an ordering of vertices via DFS.

Ensure each vertex is assigned a color from the ∆ available choices.

Avoid conflicts by considering adjacency constraints.

Key Argument: Since a vertex has at most ∆ neighbors, one of the ∆
colors remains available.
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Implications of Brook’s Theorem

Provides an upper bound for general graphs.

Justifies why only complete graphs and odd cycles exceed ∆ colors.

Used in algorithmic graph coloring techniques.
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Practice Problems

Problem 1: Show that a tree always satisfies Brook’s Theorem.

Problem 2: Construct a connected graph with ∆ = 4 that requires
exactly 4 colors.

Problem 3: Prove that every bipartite graph satisfies Brook’s
Theorem.
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Example Illustrating Brook’s Theorem

Observation: Brook’s Theorem states that for a connected graph G ,
unless G is a complete graph or an odd cycle,

χ(G ) ≤ ∆(G ).

Example: Graph with
χ(G ) = ∆(G )

A

B

C

D

Exercise:

Compute χ(G ) and ∆(G ).

Does Brook’s Theorem hold for
this graph?
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Brook’s Theorem

Theorem: Let G be a connected graph with maximum degree ∆(G ). If G
is neither a complete graph Kn nor an odd cycle, then:

χ(G ) ≤ ∆(G ).

Implications:

The bound is tight for complete graphs and odd cycles.

For sparse graphs, this gives an upper bound significantly lower than
the trivial bound ∆(G ) + 1.

Exercise:

Verify Brook’s Theorem for a tree with ∆ = 3.
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Proof of Brook’s Theorem

Proof Sketch:

Start with a vertex ordering ensuring that each vertex has at most
∆(G )− 1 colored neighbors.

Color each vertex greedily using at most ∆(G ) colors.

Handle exceptional cases: Complete graphs and odd cycles require
special treatment.

Conclusion: - Since no vertex is forced to use more than ∆(G ) colors,

χ(G ) ≤ ∆(G ).
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Definition of Edge Coloring

Edge Coloring: An assignment of colors to edges such that no two
adjacent edges share the same color.

Chromatic Index (χ′(G )): The minimum number of colors required for a
valid edge coloring of G .

Example: Consider a simple cycle graph C4:

A

B

C

D

A proper edge coloring using 2 colors.
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Vizing’s Theorem

Theorem: Every simple graph satisfies χ′(G ) = ∆ or ∆ + 1, where ∆ is
the maximum degree of G .

Example: Consider K4, the complete graph on 4 vertices.

A

B

C

D

Here, χ′(K4) = 3, which is ∆.
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A

B

C

D

Here, χ′(K4) = 3, which is ∆.

SDB GCM Edge Coloring 69 / 78



Chromatic Index and Special Graphs

Example: Bipartite Graphs

A

B

C

D

A bipartite graph always has χ′ = ∆.
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Applications of Edge Coloring

Example: Exam Timetabling

Consider students A, B, and C taking exams in subjects X, Y, and Z.

If two students share an exam, they need separate time slots.

Representing conflicts as edges in a graph leads to an edge coloring
problem.
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Practice Problems

Problem 1: Find the chromatic index of a star graph with n edges.

Problem 2: Prove that every bipartite graph is Class 1.

Problem 3: Determine whether K5 is Class 1 or Class 2.
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Introduction to Edge Coloring

Definition: An edge coloring of a graph G = (V ,E ) is an assignment of
colors to edges such that no two adjacent edges share the same color.
Chromatic Index χ′(G ): The minimum number of colors needed for a
proper edge coloring of G .
Applications:

Scheduling tasks without conflicts.

Frequency assignment in telecommunications.

Traffic signal optimization.
Example: Edge Coloring of K4

A

B

C

D

Exercise:

Compute χ′(K4).

Find the edge chromatic number
of C6.
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Vizing’s Theorem

Theorem (Vizing, 1964): For any simple graph G with maximum degree
∆(G ),

∆(G ) ≤ χ′(G ) ≤ ∆(G ) + 1.

Implications:

Every graph falls into either:
▶ Class 1: χ′(G ) = ∆(G ).
▶ Class 2: χ′(G ) = ∆(G ) + 1.

Most graphs are Class 1, but some require ∆(G ) + 1 colors.

Example: Edge Coloring of a
Graph

A

B

C

D

E

Exercise:

Find ∆(G ) and determine
whether G is Class 1 or Class 2.

Apply an edge-coloring
algorithm to find χ′(G ).
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Applications of Edge Coloring

Real-World Uses:

Scheduling Problems: Assigning workers to shifts where conflicts
must be avoided.

Communication Networks: Channel assignment to avoid signal
interference.

Graph-Based Resource Allocation: Ensuring no two conflicting
tasks share a resource.

Example: Scheduling with Edge
Coloring

Task 1

Task 2

Task 3

Task 4

Exercise:

How many time slots are
required to schedule these tasks?

Verify the solution using edge
coloring.
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Comprehensive Summary of Graph Coloring Topics I

Graph Coloring Basics:
▶ Definition of vertex, edge, and face coloring.
▶ Importance in scheduling, networking, and optimization.

Fundamental Equations:
▶ Bounds on the chromatic number.
▶ Relationship between chromatic number, independent sets, and

degrees.

Matchings and Perfect Matchings:
▶ Hall’s Marriage Theorem.
▶ Augmenting paths.
▶ Applications in pairing problems.

Vertex Coloring:
▶ Properties of special graphs:

⋆ Complete graphs.
⋆ Bipartite graphs.
⋆ Cycle graphs.

▶ Mycielski’s Theorem for high chromatic numbers.
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Comprehensive Summary of Graph Coloring Topics II

Chromatic Number and Cliques:
▶ Relationship between chromatic number χ(G ) and clique number

ω(G ).
▶ Implications for graph structure.

Greedy Coloring Algorithm:
▶ Step-by-step approach.
▶ Worst-case analysis.
▶ Applications in heuristic-based graph coloring.

Coloring of Chordal Graphs:
▶ Definition of chordal graphs.
▶ Perfect elimination ordering.
▶ Efficient polynomial-time coloring algorithm.

Brook’s Theorem:
▶ Bound: χ(G ) ≤ ∆ for connected graphs that are neither complete nor

odd cycles.
▶ Significance in graph coloring theory.

Edge Coloring and Vizing’s Theorem:
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Comprehensive Summary of Graph Coloring Topics III

▶ Definition of chromatic index χ′(G ).
▶ Classification of graphs into:

⋆ Class 1: χ′(G) = ∆.
⋆ Class 2: χ′(G) = ∆+ 1.

▶ Applications in scheduling and resource allocation.

Key Applications:

Scheduling: Exams, jobs, frequency assignments.

Networking: Channel assignment, routing.

Compiler Optimization: Register allocation.

Timetable Optimization.
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Introduction to Hypergraph
A hypergraph is a generalization of a graph in which an edge can connect
any number of vertices. In contrast to the traditional graph where an edge
connects exactly two vertices, a hypergraph allows edges to connect more
than two vertices.

Hypergraph: A pair H = (V ,E ) where V is a set of vertices and E
is a set of hyperedges.
Hyperedge: A subset of V containing at least two vertices.

A B

C D

Hyperedge 1

Hyperedge 2

Figure: A simple hypergraph with 4 vertices and 2 hyperedges
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Interesting Results on hypergraphs

Turán’s Theorem Turán’s theorem for hypergraphs states that the
maximum number of hyperedges in a k-uniform hypergraph on n vertices
not containing a complete subhypergraph of size r is achieved by the
Turán hypergraph, which is constructed by partitioning the vertices into
r − 1 parts of nearly equal size and including all hyperedges that intersect
each part in exactly one vertex.

T (n, k , r) =

(
1− 1

r − 1

)(
n

k

)
Erdős-Ko-Rado Theorem The Erdős-Ko-Rado theorem states that for
n ≥ 2k , the maximum number of k-element subsets of an n-element set
such that any two subsets have at least one element in common is

(n−1
k−1

)
.

|F| ≤
(
n − 1

k − 1

)
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Applications of Hypergraphs
Recommendation Systems: Hypergraphs can model complex
relationships between users and items, improving recommendation
accuracy.

Social Network Analysis: Hypergraphs can represent groups and
communities in social networks, facilitating analysis of complex social
structures.

Computer Vision: Hypergraphs can be used to model relationships
between objects in images and videos, enabling advanced image and
video analysis.

Hypergraph Neural Networks: A type of neural network that uses
hypergraphs to model complex relationships between data points.

Hypergraph-Based Clustering: A clustering algorithm that uses
hypergraphs to identify clusters in high-dimensional data.

Hypergraph-Based Dimensionality Reduction: A dimensionality
reduction technique that uses hypergraphs to preserve the structure of
high-dimensional data.
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Challenges

Scalability: Hypergraph algorithms can be computationally expensive
and require large amounts of memory.

Interpretability: Hypergraphs can be difficult to interpret and
visualize, making it challenging to understand the results.

Real-World Applications: There is a need for more real-world
applications of hypergraphs to demonstrate their practical value.

Hypergraphs provide a powerful tool for modeling complex relationships in
data and have numerous applications across various fields. While there are
challenges to be addressed, the potential benefits of hypergraphs make
them an exciting area of research and development.
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Introduction to 3-Way and m-Way Matching
Definition:

A 3-way matching extends the concept of a regular matching to sets
of 3 elements instead of 2.

More generally, an m-way matching is a collection of disjoint sets of
m vertices such that no two sets share a common vertex.

Alternatively, it’s a set of edges in a hypergraph such that each vertex
is incident to at most m edges in the set.

Applications:

3-way matching: Used in resource allocation, stable family problems,
and combinatorial auctions.

m-way matching: Generalized to hypergraph matching in
real-world problems like team formation.

Example: A 3-way matching in a graph.

A B C

D E F

G

Exercise: Find a 3-way
matching in a given
hypergraph.
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Formal Definition of m-Way Matching

Definition: A matching in an m-uniform hypergraph H = (V ,E ) is a
collection of disjoint hyperedges M ⊆ E such that:

∀e, e ′ ∈ M, e ∩ e ′ = ∅.

where each hyperedge e contains exactly m vertices.
Key Properties:

Extends bipartite matching to hypergraphs.

m-way matching problems are NP-hard for m ≥ 3.

Used in generalized stable matching problems.

Exercise: Prove that a maximum 3-way matching in an m-uniform
hypergraph can be found using linear programming relaxation.
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Algorithms for Finding 3-Way and m-Way Matching

Approaches:

Exact Algorithms: - Integer Linear Programming (ILP) for small
instances. - Backtracking-based search.

Approximation Algorithms: - Greedy algorithms with logarithmic
approximation factors. - Local search heuristics.

Randomized Algorithms: - Used in large-scale data-driven matching
applications.

Exercise: Implement a greedy algorithm for 3-way matching in a small
dataset.
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Applications of m-Way Matching

Real-World Applications:

Tripartite Matching in Job Allocation: Matching employees to
projects in a 3-party system.

Combinatorial Auctions: Assigning items to bidders where groups
of items must be allocated together.

Team Formation in Online Platforms: Creating optimal teams of 3
or more members in sports and online games.

Bioinformatics and Protein Interaction Networks: Finding
clusters in biological networks.

Exercise: Discuss how an m-way matching problem can be applied in
supply chain management.

SDB GCM Appendix More on Matching 8 / 32



Summary of Key Takeaways on m-Way Matching

Key Concepts:

3-way matching: A matching where edges cover sets of size 3.

m-way matching: A generalization of standard matching to
m-uniform hypergraphs.

Applications: Used in scheduling, auctions, and network science.

Key Challenges:

Finding an optimal m-way matching is NP-hard for m ≥ 3.

Approximation and randomized algorithms help in large-scale
applications.

Exercises:

Prove that a 3-way matching can be reduced to a 2-way matching in
a special case.

Implement a heuristic for an m-way matching problem.
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List Coloring
Definition: List coloring is a variant of graph coloring where each vertex v
is assigned a list L(v) of allowable colors, and the goal is to select a color
from each list such that adjacent vertices receive different colors.
Key Properties:

If all lists have size k , the graph is called k-choosable.

A graph is k-choosable if it can always be colored from any valid
assignment of lists of size k .

Example: List Coloring on a
Graph

A: {1,2}

B: {1,3}

C: {2,3}

D: {1,2}

Exercise:

Can the given graph be properly
colored using the given lists?

Find the smallest k such that
the graph is k-choosable.
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Total Coloring

Definition: Total coloring extends vertex and edge coloring by assigning
colors to both vertices and edges such that:

Adjacent vertices receive different colors.

Adjacent edges receive different colors.

Each edge receives a different color than its endpoints.

Total Chromatic Number: The minimum number of colors required for
total coloring is denoted χ′′(G ).
Example: Total Coloring of a
Graph

A

B

C

D

Exercise:

Compute χ′′(G ) for the given
graph.

What is the relation between
χ′′(G ) and ∆(G )?
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Fractional Coloring

Definition: Fractional coloring generalizes standard coloring by allowing
vertices to share colors in fractional proportions.
Fractional Chromatic Number:

χf (G ) = inf
|S |
k

where S is the set of colors used, and k is the number of independent sets
needed.
Example: Fractional Coloring on
C5

1

2

3

4

5

Exercise:

Show that χ(C5) = 3 but
χf (C5) =

5
2 .
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Circular Coloring

Definition: Circular coloring is a generalization of chromatic number,
where colors are placed on a circle, and adjacent vertices must be
separated by a minimum angular distance.
Circular Chromatic Number:

χc(G ) = inf
k

d

where k is the number of colors, and d is the minimum distance constraint.
Example: Circular Coloring on a
Graph

A

B

C

D

Exercise:

Compute χc(G ) for the given
graph.

Compare χc(G ) and χ(G ).
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Graph Coloring as a Constraint Satisfaction Problem
Definition: Graph coloring can be formulated as a Constraint
Satisfaction Problem (CSP), where:

Variables: Each vertex represents a variable.

Domains: Each variable has a domain of available colors.

Constraints: Adjacent vertices must have different colors.

Applications:

Scheduling: Assigning non-overlapping time slots.

Register Allocation: Mapping variables to CPU registers.

Resource Allocation: Avoiding conflicts in shared resources.
Example: CSP Representation of
a Graph

A

B

C

D

Exercise:

Formulate the CSP variables and
constraints for the given graph.

Solve using domain reduction
techniques.
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Graph Coloring in Integer Linear Programming (ILP)
Formulation:

Introduce binary variables xvi where:

xvi =

{
1, if vertex v is assigned color i ,

0, otherwise.

Constraints:
▶ Each vertex gets exactly one color:

k∑
i=1

xvi = 1, ∀v ∈ V .

▶ Adjacent vertices have different colors:

xvi + xwi ≤ 1, ∀(v ,w) ∈ E ,∀i .

Objective: Minimize k , the total number of colors used.

Exercise:

Write the ILP formulation for a given graph.

Implement the ILP model using an optimization solver.
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Approximation Algorithms for Graph Coloring
Why Approximation Algorithms?

Graph coloring is NP-hard.

Approximation algorithms provide near-optimal solutions efficiently.

Common Approximation Techniques:

Greedy Coloring: Uses at most ∆(G ) + 1 colors.

DSATUR Algorithm: Colors vertices based on degree of saturation.

Semidefinite Programming (SDP): Provides better bounds in
dense graphs.

Example: Greedy Coloring
Approximation

A

B

C

D

Exercise:

Apply the DSATUR algorithm
to color the given graph.

Compare the number of colors
used with greedy coloring.
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Scheduling Problems – Timetable & Exam Scheduling

Problem: Assign time slots to events (e.g., exams, meetings) so that no
two conflicting events occur simultaneously.
Graph Representation:

Vertices represent exams (or classes).

Edges represent conflicts (e.g., students taking both exams).

Proper coloring ensures no conflicts in the schedule.
Example: Exam Scheduling

Math

Physics

Chemistry

CS

Exercise:

Assign time slots using a graph
coloring approach.

What is the minimum number
of time slots required?
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Register Allocation in Compilers

Problem: Assign a limited number of CPU registers to variables during
program execution.
Graph Representation:

Vertices represent variables.

Edges represent conflicts (variables that cannot share a register).

Coloring the graph with k colors ensures at most k registers are
needed.

Example: Variable Interference
Graph

x

y

z

w

Exercise:

Find the chromatic number of
the interference graph.

How many registers are needed?
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Frequency Assignment in Mobile Networks
Problem: Assign different frequencies to nearby mobile towers to avoid
interference.
Graph Representation:

Vertices represent mobile towers.

Edges represent towers that are too close and must use different
frequencies.

The chromatic number determines the minimum number of
frequencies required.

Example: Mobile Towers with
Frequency Constraints

T1

T2

T3

T4

Exercise:

How many different frequencies
are required?

Assign optimal frequencies using
graph coloring.
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Network Security & Fault-Tolerant Systems

Problem: Preventing security vulnerabilities by assigning tasks/resources
optimally.
Graph Representation:

Nodes represent tasks or processes.

Edges represent security dependencies (conflicts).

Coloring ensures that no two dependent tasks run at the same time.
Example: Fault-Tolerant Resource
Allocation

P1

P2

P3

P4

Exercise:

Assign security levels using
graph coloring.

How many security levels are
required?
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4-Color Theorem and Its Open Questions

Theorem: Every planar graph can be colored using at most 4 colors.
Implications:

Originally proven using computer verification.

Raises the question: Can a simpler, human-verifiable proof exist?

Does the result extend to other families of graphs?
Example: A Planar Graph

A

B

C

D

Exercise:

Prove that this graph is planar.

Can you color it using only four
colors?
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Hadwiger’s Conjecture

Conjecture: If a graph G has chromatic number χ(G ), then it contains a
complete minor Kχ(G).
Implications:

Strengthens the 4-Color Theorem for planar graphs.

Holds for χ(G ) ≤ 6, but remains open for larger values.

Example: K4 Minor in a Graph

A

B

C

D

Exercise:

Find a K3 minor in the given
graph.

Extend it to find a K4 minor.
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Erdős–Faber–Lovász Conjecture

Conjecture: If n complete graphs Kn share at most one vertex between
any pair, then their union can be colored using at most n colors.
Status: - Proven for small cases but remains open in full generality. - A
significant problem in extremal graph theory.
Example: Union of 3 Cliques

A

B

C

D

E

Exercise:

How many colors are required to
color the given graph?

Can you construct a union of
four K4 graphs sharing one
vertex each?
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Chromatic Number of Random Graphs

Open Question: What is the expected chromatic number of a random
graph G (n, p) with edge probability p?
Key Insights:

Probabilistic methods estimate bounds.

χ(G ) depends on density and structure.

Erdős–Rényi models provide useful approximations.

Example: Random Graph G (5, 0.5)

1

2

3

4

5

Exercise:

Estimate χ(G ) using
probabilistic bounds.

How does increasing p affect
χ(G )?
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Additional Open Problems in Graph Coloring

Other Unresolved Questions:

Reed’s Conjecture: Relates χ(G ) to ω(G ) and ∆(G ).

Hedetniemi’s Conjecture: On chromatic number of tensor products
of graphs.

Graph Coloring in Higher Dimensions: Can chromatic properties
be extended to hypergraphs?

Challenge Problem:

Explore an open problem and attempt to construct a counterexample.
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Graph Coloring in Google’s Exam Scheduling System
Problem: Google’s exam scheduling system must allocate time slots to thousands of
students while ensuring no two exams taken by the same student overlap.
Challenges:

Handling large-scale data with millions of constraints.

Minimizing the number of exam slots.

Ensuring fairness in scheduling (e.g., avoiding consecutive exams).

Graph Representation:

Each exam is a vertex.

An edge exists between two exams if they share students.

A valid coloring assigns time slots so that no two adjacent vertices share the same
color.

Optimization Techniques:

Heuristics & Approximation Algorithms: Reduce complexity in large instances.

Integer Linear Programming (ILP): Models the scheduling problem
mathematically.

Constraint Programming: Finds optimal solutions by enforcing constraints
dynamically.
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Example – Google’s Exam Scheduling Graph

Example: Suppose a university has 6 exams with student enrollments
leading to the following conflict graph:

Conflict Graph

Math

Physics

CS

Chemistry

Biology

English

Analysis:

Chromatic Number:
χ(G ) = 3, meaning we need at
least 3 exam slots.

Greedy Coloring: Assigns
exams to available slots
sequentially.

Optimization: Advanced
techniques reduce the total
slots.
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Use of Graph Coloring in Quantum Computing
Problem: Quantum computers execute operations on qubits, where gate
scheduling must minimize conflicts and avoid decoherence.
Challenges:

Qubits have limited connectivity.

Parallel operations must avoid interference.

Reducing the total execution time is crucial.

Graph Representation:

Qubits are represented as vertices.

Edges represent dependencies (e.g., two-qubit gates).

A valid coloring ensures independent operations can run in parallel.

Techniques Used:

Graph Partitioning: Decomposes large circuits into smaller
independent units.

Edge Coloring: Determines when operations can be scheduled in
parallel.

Constraint Solvers: Find optimal execution schedules.
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Example – Quantum Gate Scheduling

Example: Consider a quantum algorithm with four qubits and controlled
gate operations.
Dependency Graph

Q1

Q2

Q3

Q4

Key Observations:

Coloring the graph helps
schedule independent
operations in parallel.

Optimizing coloring
minimizes circuit execution
time.
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Graph Coloring in DNA Sequencing and Bioinformatics
Problem: Genome sequencing involves reconstructing DNA sequences
from overlapping fragments.
Challenges:

DNA fragments may have errors.

Overlaps must be correctly identified.

Large datasets require efficient computation.

Graph Representation:

Each DNA fragment is a vertex.

Edges represent significant overlap between sequences.

A proper coloring groups compatible fragments together.

Optimization Techniques:

Greedy Approximation Algorithms: Finds near-optimal solutions
quickly.

Maximal Independent Set Selection: Determines sequences with
no conflicts.

Graph Partitioning: Improves computational efficiency.
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Example – DNA Overlap Graph

Example: Consider four DNA fragments with overlapping sequences.
Overlap Graph

Frag1

Frag2

Frag3

Frag4

Analysis:

Identify a maximal
independent set.

How does coloring help
reconstruct the genome?
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