
Graph Theory - Comprehensive Topics
Detailed Concepts, Examples, and Exercises

SDB

Spring 2025

SDB Graph Theory - Comprehensive Topics 1 / 91

Koenigsberg Bridges Problem - Original Scenario I

The city of Koenigsberg (now Kaliningrad) was situated on both sides
of the Pregel River.

The river enclosed two islands connected to each other and the
mainland by seven bridges.

The challenge: Start at any point and traverse all bridges exactly
once, returning to the starting point.

SDB Graph Theory - Comprehensive Topics 2 / 91

Koenigsberg Bridges Problem - Original Scenario II

Mainland B

Mainland C

Island A Island D

SDB Graph Theory - Comprehensive Topics 3 / 91

Outline

1 Introduction

2 Types of Graphs

3 Common Terminologies in Graph

4 Subgraphs and Decompositions

5 Directed Graphs

6 Weighted Graphs

7 Special Graphs and Problems

Graph and Graph as Models

A Graph G = (V ,E) consists of:
▶ V : A set of vertices (nodes).
▶ E : A set of edges (connections between vertices).

Graphs are used to model relationships in various fields:
▶ Social networks, transportation, communication, etc.

A B

C

Exercise:

Define a graph for your daily commute.

List its vertices and edges.

Question to Ponder: Can all real-world problems be modeled using
graphs?

SDB Graph Theory - Comprehensive Topics Introduction 4 / 91

Formal Definition of a Graph I

A graph G is defined as an ordered pair:

G = (V ,E)

where:
▶ V is the set of vertices (nodes).
▶ E is the set of edges (connections) represented as a subset of V × V .

Each edge is a relation (u, v), where u, v ∈ V .

Extensions:

Self-loop: An edge of the form (v , v) where v ∈ V .

Parallel Edges: Two or more edges connecting the same pair of
vertices, represented as distinct elements in E .

SDB Graph Theory - Comprehensive Topics Introduction 5 / 91

Formal Definition of a Graph II

A B

C

Exercise:

Define the vertex set and the edge set for the above graph.

Question to Ponder: How do self-loops and parallel edges affect graph
properties such as connectivity and cycles?

SDB Graph Theory - Comprehensive Topics Introduction 6 / 91

Basic Concepts in Graph Theory

Vertex (Node): A point in the graph, represented by a circle or a
dot. The plural form of vertex is vertices, and it is also commonly
referred to as nodes (with the plural form being nodes).

Edge (Arc): A line segment connecting two vertices, representing a
relationship between them. The plural form of edge is edges, and it is
also commonly referred to as arcs (with the plural form being arcs).

A B

Figure: Vertex (Node) and Edge (Arc)

Note: Throughout this presentation, the terms vertex and node, as well as
edge and arc, will be used interchangeably.

SDB Graph Theory - Comprehensive Topics Introduction 7 / 91

Degree of a Vertex

Degree of a Vertex: The number of edges incident on a vertex; note
that, it is also sometimes referred to as valence of a vertex.

Notation: d(v) or deg(v)

A B

C

Figure: Degree of Vertices: d(A) = 2, d(B) = 2, d(C) = 2

SDB Graph Theory - Comprehensive Topics Introduction 8 / 91

Types of Degrees

Isolated Vertex: A vertex with degree 0.

Pendant Vertex: A vertex with degree 1.

Interior Vertex: A vertex with degree greater than 1.

A B C

D E

Figure: d(A) = 1, d(B) = 2, d(C) = 1, d(D) = 2, d(E) = 0

SDB Graph Theory - Comprehensive Topics Introduction 9 / 91

Adjacent Vertices

Adjacent Vertices: Two vertices (nodes) are adjacent if they are
connected by an edge (arc).

Notation: u ∼ v or u is adjacent to v .

A B

C

Figure: Adjacent Vertices: A ∼ B, B ∼ C , but A ≁ C

SDB Graph Theory - Comprehensive Topics Introduction 10 / 91

Neighbors of a Vertex

Neighbors of a Vertex: The set of all vertices adjacent to a given
vertex.

Notation: N(v) or N(v) = {u | u ∼ v}.

A B

C

D

Figure: Neighbors of a Vertex: N(B) = {A,C ,D}

SDB Graph Theory - Comprehensive Topics Introduction 11 / 91

Outline

1 Introduction

2 Types of Graphs

3 Common Terminologies in Graph

4 Subgraphs and Decompositions

5 Directed Graphs

6 Weighted Graphs

7 Special Graphs and Problems

Types of Graphs I

Graphs can be categorized based on their structure and properties.
Common types include:

1 Star Graph: One central vertex connected to all others.
2 Cycle Graph: A graph that forms a single closed loop.
3 Complete Graph: Every pair of vertices is connected by an edge.
4 Bipartite Graph: Vertices can be divided into two disjoint sets with

edges only between the sets.
5 Tree: A connected graph with no cycles.
6 Plannar Graph: A graph that can be drawn on a plane without any

edge overlapping.

SDB Graph Theory - Comprehensive Topics Types of Graphs 12 / 91

Types of Graphs II

Examples:

A

B

C

D

Star Graph(K1,n)

A

B

C

D

Cycle Graph(Cn)

Question to Ponder: How do different graph types model real-world
problems?

SDB Graph Theory - Comprehensive Topics Types of Graphs 13 / 91

Simple and General Graphs
Simple Graph:

▶ Contains no self-loops (edges that connect a vertex to itself).
▶ No multiple edges between any pair of vertices.

General Graph:
▶ May contain loops and multiple edges between pairs of vertices.
▶ Represents more complex relationships compared to simple graphs.
▶ Also referred to as Multigraph (no self-loops) and Pseudograph (no

restrictions). See Appendix.

Examples:

A B

C

Simple Graph

A B

C

General Graph

Question to Ponder: How do loops and multiple edges change the
properties of a graph?

SDB Graph Theory - Comprehensive Topics Types of Graphs 14 / 91

Matrices and Isomorphism

Adjacency Matrix: Represents edges between vertices as a matrix.

Isomorphism: Two graphs are isomorphic if their structure can be
mapped identically.

A B

C

1 2

3

Exercise:

Write the adjacency matrix for the above graphs.

Prove their isomorphism.

Question to Ponder: Why is identifying isomorphism computationally
challenging?

SDB Graph Theory - Comprehensive Topics Types of Graphs 15 / 91

Complete Graphs

A complete graph is a graph in which every pair of vertices is
connected by an edge.

Denoted as Kn, where n is the number of vertices.

A B

C

Exercise:

Verify if a graph with n vertices and n(n − 1)/2 edges is complete.

Question to Ponder: How do complete graphs relate to real-world
applications?

SDB Graph Theory - Comprehensive Topics Types of Graphs 16 / 91

Bipartite Graphs

A graph is bipartite if its vertices can be divided into two disjoint
sets such that every edge connects a vertex from one set to the other.

No edges exist between vertices of the same set.

A

B

C

D

E

⋆ Notice that cycle graphs with an even number of vertices are always
bipartite.
Question to Ponder: How can bipartite graphs be used in matching
problems?

SDB Graph Theory - Comprehensive Topics Types of Graphs 17 / 91

Complete Bipartite Graphs

A complete bipartite graph is a bipartite graph where every vertex
in one set is connected to every vertex in the other set.

Denoted as Km,n, where m and n are the sizes of the two sets.

A

B

C

D

E

⋆ Notice that a Star Graph with n vertices is basically K1,n−1.
Exercise:

Verify if the given graph is a complete bipartite graph.

Question to Ponder: How are complete bipartite graphs used in network
design?

SDB Graph Theory - Comprehensive Topics Types of Graphs 18 / 91

Planar Graphs I

Definition: A graph is planar if it can be drawn on a plane without
any edges crossing. - Such a drawing is called a plane embedding of
the graph.

Properties:
▶ Euler’s Formula: For a connected planar graph: V − E + F = 2,

where V is the number of vertices, E the number of edges, and F the
number of faces (including the outer face).

▶ A planar graph must satisfy: E ≤ 3V − 6 for V ≥ 3.
▶ A bipartite planar graph satisfies: E ≤ 2V − 4.

Examples:
▶ Planar: K4, Cycle graphs (Cn).
▶ Non-Planar: K5, K3,3.

SDB Graph Theory - Comprehensive Topics Types of Graphs 19 / 91

Planar Graphs II

A

B

C

D

Planner K4

E

F

G

H I

Non-Planner K5

Exercise:

Verify Euler’s formula for the K4 graph.

Prove why K5 is non-planar using edge and vertex counts.

SDB Graph Theory - Comprehensive Topics Types of Graphs 20 / 91

Tree Graph I

Definition: A tree is an undirected, connected, and acyclic graph. -
Formally, a graph T = (V ,E) is a tree if:

▶ T is connected (a path exists between any two vertices).
▶ T contains no cycles.

Properties of Trees:
▶ A tree with n vertices has exactly n − 1 edges.
▶ Adding one edge to a tree creates exactly one cycle.
▶ Removing any edge from a tree disconnects it.
▶ There is a unique path between any pair of vertices.

Examples of Trees:
▶ Star Tree (K1,n): One central vertex connected to all others.
▶ Path Tree (Pn): A tree where all vertices form a single path.
▶ Binary Tree: A tree where each vertex has at most two children.

SDB Graph Theory - Comprehensive Topics Types of Graphs 21 / 91

Tree Graph II

Visualization:

A

B C

D E F

Exercise:

Prove that a tree with n vertices has exactly n − 1 edges using
induction.

Identify the types of trees (binary, star, path) in the above
visualization.

SDB Graph Theory - Comprehensive Topics Types of Graphs 22 / 91

Outline

1 Introduction

2 Types of Graphs

3 Common Terminologies in Graph

4 Subgraphs and Decompositions

5 Directed Graphs

6 Weighted Graphs

7 Special Graphs and Problems

Vertex Degrees and Counting

The degree of a vertex is the number of edges incident to it.

Sum of all vertex degrees equals twice the number of edges.

Exercise:

Prove the Handshaking Lemma for a graph with n vertices and m
edges.

Question to Ponder: How can vertex degrees help in identifying graph
properties?

SDB Graph Theory - Comprehensive Topics Common Terminologies in Graph 23 / 91

Graph Size and Order I

Definition:
▶ Order (|V |): The order of a graph is the number of vertices it contains.
▶ Size (|E |): The size of a graph is the number of edges it contains.

Notation: A graph G is represented as G = (V ,E), where:
▶ V is the vertex set.
▶ E is the edge set.
▶ |V | is the graph’s order, and |E | is its size.

Examples:

▶ For a complete graph Kn: Order: |V | = n, Size: |E | =
(
n
2

)
= n(n−1)

2 .
▶ For a cycle graph Cn: Order: |V | = n, Size: |E | = n.
▶ For a path graph Pn: Order: |V | = n, Size: |E | = n − 1.
▶ For any tree: Order: |V | = n, Size: |E | = n − 1.

SDB Graph Theory - Comprehensive Topics Common Terminologies in Graph 24 / 91

Graph Size and Order II
Properties:

▶ The size of a graph is always bounded by: 0 ≤ |E | ≤
(|V |

2

)
.

▶ Sparse graph: |E | ≪ |V |2, Dense graph: |E | ≈ |V |2.
Visualization:

A

B

C

D

Order: |V | = 4 (A, B, C, D).

Size: |E | = 5 (five edges drawn).

Exercise:

Determine the size and order of the complete bipartite graph K3,2.

Find the size of a tree with 10 vertices.

SDB Graph Theory - Comprehensive Topics Common Terminologies in Graph 25 / 91

Connection in Graphs

A graph is connected if there is a path between every pair of vertices.

Disconnected Graph: Contains at least two components.

A B

C

D E

Exercise:

Determine if the graph is connected.

Identify its components.

Question to Ponder: How does connectivity impact graph algorithms?

SDB Graph Theory - Comprehensive Topics Common Terminologies in Graph 26 / 91

Degree Sequence
A degree sequence (d1, d2, . . . , dn) is a list of vertex degrees in
non-increasing order.

Example: For the graph below, the degree sequence is (3, 3, 3, 2, 1).

Not all degree sequences are valid for simple graphs. Conditions must
be satisfied to determine if a sequence is graphic.

A B

C

D

E

Exercise:

Determine the degree sequence of a star graph with 6 vertices.

Verify if the sequence (4, 3, 3, 2, 2, 1) is graphic.

Question to Ponder: How can the degree sequence help in identifying
graph properties?

SDB Graph Theory - Comprehensive Topics Common Terminologies in Graph 27 / 91

Graphic Sequences

A sequence of numbers, (d1, d2, . . . , dn), is graphic if it represents
the degree sequence of a simple graph. Following conditions must be
true.

1 The sequence must be made up of non-negative integers
2 The sum of all the degrees must be even
3 di can be at most n − 1

Example: (3, 3, 2, 2) is graphic (construct the graph to verify).

Exercise:

Verify if (3, 2, 2, 1) is graphic.

How about (5, 3, 2, 1, 1, 1) and (5, 3, 2, 1, 1)?

Question to Ponder: What conditions make a sequence graphic?

SDB Graph Theory - Comprehensive Topics Common Terminologies in Graph 28 / 91

Degree Sequence to Graph Construction I

Problem Statement: Given a degree sequence, construct a graph
or determine if no graph exists.

Havel-Hakimi Algorithm: A constructive method to check if a
degree sequence is graphical and build the graph:

1 Sort the degree sequence in non-increasing order.
2 Remove the first vertex (highest degree) and decrease the degree of the

next highest d vertices.
3 Repeat until all degrees are 0 or a contradiction arises.

SDB Graph Theory - Comprehensive Topics Common Terminologies in Graph 29 / 91

Degree Sequence to Graph Construction II

Example: Degree sequence: {3, 3, 2, 2, 1, 1}.

A

B

C

D

E F

Exercise:

Determine if the sequence {4, 3, 3, 2, 2, 2} is graphical.

Construct the graph if the sequence is valid.

Question to Ponder: Can there be more than one graph for a given
degree sequence?

SDB Graph Theory - Comprehensive Topics Common Terminologies in Graph 30 / 91

Walk, Trail, Circuit, Path and Cycle I

Walk: A sequence of vertices and edges; vertices and edges may
repeat: W = v0, e1, v1, e2, v2, . . . , ek , vk where:
∀1 ≤ i ≤ k ei = {vi−1, vi}.
Trail: A walk in which all edges are distinct:
∀i , j i ̸= j ei ̸= ej .

Circuit: A closed trail (first and last vertices are the same), where:
∀i , j i ̸= j v0 = vk , ei ̸= ej . a

Path: A trail in which all vertices are distinct:
∀i , j i ̸= j vi ̸= vj .

Cycle: A closed path (first and last vertices a(e the same), where:
∀i , j i ̸= j , i , j ∈ [1, k − 1] v0 = vk , vi ̸= vj .

Notes:

Paths and cycles are subsets of trails and walks.

Circuits allow repeated vertices but not edges, while cycles restrict
both.

SDB Graph Theory - Comprehensive Topics Common Terminologies in Graph 31 / 91

Walk, Trail, Circuit, Path and Cycle II

Example:

A

B

C

D

E

F

Example Walk: A → B → C → D → E → C → B → A → B.

Example Trail: A → B → C → D → E → C → A → D.

Example Circuit: A → B → C → D → E → C → A.

Example Path: A → B → C → E → F.

Example Cycle: A → B → C → D → A.

SDB Graph Theory - Comprehensive Topics Common Terminologies in Graph 32 / 91

Walk, Trail, Circuit, Path and Cycle III

Exercise:

Identify whether the following sequences in the graph are walks, trails,
paths, circuits, or cycles:

1 A → B → C → D → A.
2 F → C → D → E → C → E → C → B → A → C.
3 A → D → C → E → F → C → B → A.

Identify all cycles and circuits in the graph.

Identify all paths between A and F in the graph.

Identify all Walks between A and B in the graph.

Identify all trails between A and D in the graph.

SDB Graph Theory - Comprehensive Topics Common Terminologies in Graph 33 / 91

Diameter of a Graph I

The diameter of a graph is the longest shortest path between any
two vertices.

It measures the graph’s ”largest reachability” in terms of path length.

The diameter of a graph G is defined as:

diam(G) = max
u,v∈V

d(u, v)

where:
▶ d(u, v) is the shortest path distance between vertices u and v in G .
▶ The diameter is the largest shortest path distance between any two

vertices in the graph.

If the graph is disconnected, the diameter is considered infinite.

Example:

A B C D E

SDB Graph Theory - Comprehensive Topics Common Terminologies in Graph 34 / 91

Diameter of a Graph II

Exercise:

Compute the diameter of a star graph with 5 vertices.

Determine the diameter of a cycle graph with 6 vertices.

Question to Ponder:

How does the diameter relate to the efficiency of communication in a
network?

What is the relationship between the diameter and the connectivity of
a graph?

SDB Graph Theory - Comprehensive Topics Common Terminologies in Graph 35 / 91

Eccentricity of a Vertex I

The eccentricity of a vertex v in a graph G is the maximum shortest
path distance from v to any other vertex in G .

Formally,

e(v) = max
u∈V (G)

d(v , u)

where d(v , u) is the shortest path distance between v and u.

Note: Eccentricity helps in understanding the structure of a graph. It is
used in network analysis, shortest path algorithms, and centrality measures.
Properties of Eccentricity Definition:

The vertex with the smallest eccentricity is called a central vertex.

The largest eccentricity among all vertices is the diameter of the
graph.

The smallest eccentricity among all vertices is the radius of the graph.

SDB Graph Theory - Comprehensive Topics Common Terminologies in Graph 36 / 91

Eccentricity of a Vertex II
Example:

Consider the following graph:

A B

C D

E

Compute e(v) for each vertex and determine the radius and diameter.

Exercises

Compute the eccentricity of each vertex in the given graph.

Determine the central vertex (or vertices).

Find the diameter and radius of the graph.

Modify the graph by adding an edge and observe how the
eccentricities change.

SDB Graph Theory - Comprehensive Topics Common Terminologies in Graph 37 / 91

Components of a Graph I

Definition: A component of a graph is a maximal connected
subgraph, meaning that:

▶ Any two vertices in the same component are connected by a path.
▶ No additional vertices or edges can be added without breaking

connectivity.

Properties:
▶ A graph may consist of one or more components.
▶ The components of a graph are disjoint.
▶ Every vertex belongs to exactly one component.

Types of Components:
▶ Connected Component: A subgraph where all vertices are connected.
▶ Isolated Component: A single vertex with no edges.

SDB Graph Theory - Comprehensive Topics Common Terminologies in Graph 38 / 91

Components of a Graph II

A

B

C

D

E

F

In the above graph:
▶ Component 1: {A,B,C}.
▶ Component 2: {D,E}.
▶ Component 3: {F} (an isolated component).

Exercise:
▶ Identify all components in a complete bipartite graph K2,3.
▶ Prove: A graph with n vertices and no edges has n components.

SDB Graph Theory - Comprehensive Topics Common Terminologies in Graph 39 / 91

Cut Edges and Cut Vertices I

Cut Edge (Bridge):
▶ A cut edge (or bridge) is an edge whose removal increases the number

of connected components in the graph.
▶ Example: In the graph below, edge A → B is a cut edge.

Cut Vertex (Articulation Point):
▶ A cut vertex is a vertex whose removal increases the number of

connected components in the graph.
▶ Example: In the graph below, vertex C is a cut vertex.

Properties:
▶ An edge is a cut edge if and only if it does not belong to any cycle in

the graph.
▶ In a complete graph, no vertex is a cut vertex.
▶ In a tree, all vertices with degree greater than 1 are cut vertices, and all

edges are cut edges because removing any edge disconnects the tree.
▶ Removal of a cut vertex or cut edge isolates one or more subgraphs.

SDB Graph Theory - Comprehensive Topics Common Terminologies in Graph 40 / 91

Cut Edges and Cut Vertices II

A B C D

E

In the above graph:
▶ Cut Edge: Removing B → C disconnects A from the rest of the graph.
▶ Cut Vertex: Removing C separates the graph into two disconnected

components.

Exercise:
▶ Identify all cut edges and cut vertices in the graph above.
▶ Prove that a tree with n vertices has at least n − 1 cut edges.

SDB Graph Theory - Comprehensive Topics Common Terminologies in Graph 41 / 91

Complement Graph I

Definition: The complement of a graph G = (V ,E) is a graph
G = (V ,E), where:

E = {(u, v) | u, v ∈ V , u ̸= v , and (u, v) /∈ E}.

- The complement graph G contains all edges not present in G , with
the same vertex set V .

Properties:
▶ G and G together form a complete graph Kn.
▶ If G is complete, then G is empty.
▶ If G is disconnected, G is connected (for |V | ≥ 3).

SDB Graph Theory - Comprehensive Topics Common Terminologies in Graph 42 / 91

Complement Graph II

Example 1: Graph G :

A

B

C

D

A

B

C

D

Explanation:

Graph G :
▶ Vertices: {A,B,C ,D}.
▶ Edges: {(A,B), (B,C), (C ,D), (B,D)}.

Complement Graph G :
▶ Vertices: {A,B,C ,D}.
▶ Edges: {(A,C), (A,D)}.

SDB Graph Theory - Comprehensive Topics Common Terminologies in Graph 43 / 91

Complement Graph III

Example 2: Complement of P4 (Path graph with 4 vertices):

A B C D A

B

C

D

Example 3: Complement of C4 (Cycle graph with 4 vertices):

A

B

C

D

A

B

C

D

SDB Graph Theory - Comprehensive Topics Common Terminologies in Graph 44 / 91

Complement Graph IV

Additional Properties:
▶ The complement of the complement graph is the original graph:

G = G .

▶ If G is bipartite, G may or may not be bipartite.
▶ If G is disconnected, G is connected for |V | ≥ 3.
▶ G and G cannot share any edges, but they share the same vertex set.

Examples:
▶ For K3 (a complete graph with 3 vertices):

K3 = K c
3 = ∅ (no edges).

▶ For a star graph K1,n:
K1,n = Kn \ K1,n.

SDB Graph Theory - Comprehensive Topics Common Terminologies in Graph 45 / 91

Complement Graph V

Applications of Complement Graphs:
▶ Graph Algorithms: Some problems on a graph G can be simplified by

studying G .
▶ Independent Sets: The complement graph helps find cliques in the

original graph, as:

A clique in G =⇒ an independent set in G .

▶ Network Design: Designing complementary networks to optimize
connectivity and minimize redundancy.

Exercise:

Draw the complement graph of C4 (a cycle with 4 vertices).

Prove: The complement of a bipartite graph is not necessarily
bipartite.

Prove: If G has E edges, then G has
(|V |

2

)
− E edges.

Find the complement graph of K2,3 and determine its properties.

SDB Graph Theory - Comprehensive Topics Common Terminologies in Graph 46 / 91

Graph Connectivity I

Definition: A graph G = (V ,E) is connected if there exists a path
between every pair of vertices. Otherwise, it is disconnected.
Types of Connectivity:

Vertex Connectivity (κ(G)): The minimum number of vertices that
must be removed to disconnect G .
– If κ(G) ≥ k , then G is k-connected.

Edge Connectivity (λ(G)): The minimum number of edges that
must be removed to disconnect G .
– If λ(G) ≥ k , then G is k-edge-connected.

Strong Connectivity (Directed Graphs): A directed graph is
strongly connected if there exists a directed path between every pair
of vertices.
– If for every (u, v) ∈ V , there is a path from u to v and a path from
v to u, then the graph is strongly connected.

SDB Graph Theory - Comprehensive Topics Common Terminologies in Graph 47 / 91

Graph Connectivity II

Key Theorems:

Menger’s Theorem: For any two non-adjacent vertices in a
k-connected graph, there exist at least k vertex-disjoint paths
between them.

The minimum number of vertices needed to separate two vertices
equals the maximum number of internally disjoint paths between
them.
2-Connected Graph:

A

B

C

D

Disconnected Graph:

A

B

C

D

E

FG

H

SDB Graph Theory - Comprehensive Topics Common Terminologies in Graph 48 / 91

Graph Connectivity III

Graph Connectivity in Real-World Applications:

Network Resilience: - A highly connected network is fault-tolerant
since multiple paths exist between nodes.

Transportation Systems: - Road and railway networks use connectivity
analysis to prevent bottlenecks.

Biological Networks: - Neuronal and protein interaction networks
often rely on graph connectivity properties.

Exercise:

Compute κ(G) and λ(G) for K5.

Prove that every graph with κ(G) ≥ 2 is 2-connected.

Find a real-world example where connectivity analysis is important.

SDB Graph Theory - Comprehensive Topics Common Terminologies in Graph 49 / 91

Outline

1 Introduction

2 Types of Graphs

3 Common Terminologies in Graph

4 Subgraphs and Decompositions

5 Directed Graphs

6 Weighted Graphs

7 Special Graphs and Problems

Subgraphs

A subgraph is a graph formed from a subset of the vertices and
edges of a larger graph.

The edges in the subgraph must exist in the original graph.

A B

C

D A B

C

D

Exercise:

Identify subgraphs in the given graph.

Question to Ponder: How do subgraphs help in graph decomposition?

SDB Graph Theory - Comprehensive Topics Subgraphs and Decompositions 50 / 91

Induced Subgraphs

An induced subgraph is formed by a subset of the vertices of a
graph and all edges between those vertices that are present in the
original graph.

Induced subgraphs are unique for a given vertex subset.

A B

C D

Exercise:

Identify the induced subgraph for a given vertex subset.

Compare it with non-induced subgraphs of the same vertex set.

Question to Ponder: How does the concept of induced subgraphs assist
in graph theory proofs?

SDB Graph Theory - Comprehensive Topics Subgraphs and Decompositions 51 / 91

Graph Decomposition

A graph can be decomposed into smaller subgraphs to simplify its analysis
and understanding. Decomposition techniques help in identifying the
structure and properties of a graph.

Definition: Graph decomposition involves partitioning a graph
G = (V ,E) into subgraphs that satisfy specific properties.

Common Types of Decompositions:
▶ Vertex Decomposition: Partition the vertex set V into subsets.
▶ Edge Decomposition: Partition the edge set E into subsets, forming

edge-disjoint subgraphs.
▶ Subgraph Decomposition: Divide G into subgraphs with specific

structures.

Applications:
▶ Scheduling: Task assignments with dependencies.
▶ Network Design: Subnetwork optimization.
▶ Algorithm Design: Dynamic programming on decomposed structures.

SDB Graph Theory - Comprehensive Topics Subgraphs and Decompositions 52 / 91

Example - Vertex Decomposition

Vertex Decomposition: Partition the vertex set into subsets such
that subgraphs induced by these subsets meet certain criteria.

Example: Partition into Independent Sets
▶ A graph G can be decomposed into k independent sets V1,V2, . . . ,Vk .

Example Graph:

A B

CD E

Partition: V1 = {A,E},V2 = {B,D},V3 = {C}.
Resulting Subgraphs: Each subset induces a subgraph with no edges.

SDB Graph Theory - Comprehensive Topics Subgraphs and Decompositions 53 / 91

Example - Edge Decomposition
Edge Decomposition: Partition the edge set into disjoint subsets
E1,E2, . . . such that each subset forms a specific type of subgraph.
Example: Partition into Spanning Trees

▶ A connected graph can be decomposed into edge-disjoint spanning
trees.

Example Graph:

A

B

C

D

Decompose edges into two spanning trees:
▶ E1 = {(A,B), (B,C), (C ,D)}.
▶ E2 = {(D,A), (B,D), (A,C)}.

SDB Graph Theory - Comprehensive Topics Subgraphs and Decompositions 54 / 91

Subgraph Decomposition Example
Subgraph Decomposition: Partition a graph into subgraphs, where
each subgraph satisfies a specific property or structure.
Example: Partition into Cycles and Paths

▶ Given a graph G , decompose it into edge-disjoint subgraphs, where
each subgraph is either a cycle or a path.

Example Graph:

A

B

C

D

Decompose G into the following subgraphs:
1 Cycle: {A → B → D → A}.
2 Path: {B → C}.

SDB Graph Theory - Comprehensive Topics Subgraphs and Decompositions 55 / 91

Applications of Graph Decomposition

Scheduling:
▶ Decompose a task dependency graph into levels for parallel processing.

Network Design:
▶ Divide a communication network into subgraphs for efficient routing.

Algorithm Design:
▶ Use tree decompositions to solve problems like vertex cover, maximum

clique.

Real-World Examples:
▶ Internet backbone networks.
▶ Transportation systems with zone-wise management.

Exercise:
▶ Decompose a graph into 2 edge-disjoint spanning trees.

SDB Graph Theory - Comprehensive Topics Subgraphs and Decompositions 56 / 91

Graph Blocks (Biconnected Components) I

Definition: A block of a graph is a maximal 2-connected subgraph,
meaning:

It has no cut vertices (removing any single vertex does not disconnect
it).

It is maximal (adding any more edges/vertices introduces a cut
vertex).

Key Theorems:

A connected graph can be decomposed uniquely into blocks.

If a graph has no cut vertices, it is a single block.

If a graph has at least one cut vertex, it consists of multiple blocks,
each connected through a cut vertex.

Block-Cut Tree Representation:

A graph’s block-cut tree represents its decomposition into blocks.

Each block is a node in the tree.

SDB Graph Theory - Comprehensive Topics Subgraphs and Decompositions 57 / 91

Graph Blocks (Biconnected Components) II

Cut vertices form the links between these blocks.
Graph with Blocks:

A

B

C

D E

F

Block-Cut Tree:

B1 C B2

Exercise:

Compute the block-cut tree for a cycle graph C6.

Use Tarjan’s algorithm to find the biconnected components in the
example graph.

SDB Graph Theory - Comprehensive Topics Subgraphs and Decompositions 58 / 91

Outline

1 Introduction

2 Types of Graphs

3 Common Terminologies in Graph

4 Subgraphs and Decompositions

5 Directed Graphs

6 Weighted Graphs

7 Special Graphs and Problems

Directed Graphs

In a directed graph (also referred to as digraph), edges have a
direction (e.g., u → v).

Applications: Representing tasks with dependencies.

A B

C

Exercise:

Identify the in-degree and out-degree of vertices in the graph.

Question to Ponder: How does edge direction impact graph traversal
algorithms?

SDB Graph Theory - Comprehensive Topics Directed Graphs 59 / 91

Complete Directed Graph

A complete directed graph, denoted as
−→
Kn, is a directed graph

where every pair of vertices has two directed edges, one in each
direction.

Total number of edges: n(n − 1) for n vertices.

A B

C

Exercise:

Calculate the number of edges in
−→
K4.

Question to Ponder: What real-world systems resemble complete
directed graphs?

SDB Graph Theory - Comprehensive Topics Directed Graphs 60 / 91

Directed Graphs: In-Degree and Out-Degree

In-Degree (d−(v)): The number of edges (arcs) entering a vertex.

Out-Degree (d+(v)): The number of edges (arcs) leaving a vertex.

A B

C

Figure: In-Degree and Out-Degree: d−(A) = 1, d+(A) = 1, d−(B) = 1,
d+(B) = 1, d−(C) = 1, d+(C) = 1

SDB Graph Theory - Comprehensive Topics Directed Graphs 61 / 91

Strongly Connected Digraphs I

Definition: A directed graph (digraph) G = (V ,E) is strongly
connected if, for every pair of vertices u, v ∈ V :

There exists a directed path from u to v and from v to u.

Properties:
▶ Strong connectivity implies that every vertex can reach every other

vertex in both directions.
▶ The graph remains strongly connected if any strongly connected

component is replaced by a single vertex.

Example:

A

B

C

D

SDB Graph Theory - Comprehensive Topics Directed Graphs 62 / 91

Strongly Connected Digraphs II

In the above digraph:
▶ There is a directed path from every vertex to every other vertex.
▶ Therefore, the graph is strongly connected.

Exercise:
▶ Verify strong connectivity for the example above.
▶ Provide an example of a digraph that is not strongly connected and

explain why.

SDB Graph Theory - Comprehensive Topics Directed Graphs 63 / 91

Orientation and Tournaments

Orientation: Assigning a direction to edges in an undirected graph.

Tournament: A directed graph where every pair of vertices is
connected by a single directed edge.

A B

C

Exercise:

Verify if the given graph is a tournament.

Question to Ponder: What are the applications of tournament graphs?

SDB Graph Theory - Comprehensive Topics Directed Graphs 64 / 91

Outline

1 Introduction

2 Types of Graphs

3 Common Terminologies in Graph

4 Subgraphs and Decompositions

5 Directed Graphs

6 Weighted Graphs

7 Special Graphs and Problems

Weighted Graphs I

Definition: A weighted graph is a graph where each edge has a
numerical value (weight) associated with it. A weighted graph is a
mathematical structure consisting of:

▶ A set of vertices, denoted by V = {v1, v2, . . . , vn}.
▶ A set of edges, denoted by E = {e1, e2, . . . , em}, where each edge ei is

a pair of vertices (vi , vj).
▶ A weight function w : E → R, which assigns a real number (called

the weight) to each edge.

The weighted graph is often denoted by the triple G = (V ,E ,w).

Applications:
▶ Transportation Networks: Travel distances or times between

locations.
▶ Communication Networks: Data transmission costs.
▶ Logistics: Supply chain optimization.

SDB Graph Theory - Comprehensive Topics Weighted Graphs 65 / 91

Weighted Graphs II

Example:

A

B

C

D

4 3

5
6

2

Exercise:

Represent the above graph as an adjacency matrix with weights.

Identify a practical scenario modeled by this graph.

Create the mathematical definition equivalent for the above graph.

SDB Graph Theory - Comprehensive Topics Weighted Graphs 66 / 91

Dijkstra’s Algorithm I

Goal: Find the shortest path from a source vertex to all other vertices
in a weighted graph.

Steps:
1 Initialize distances to infinity and the source distance to 0.
2 Use a priority queue to repeatedly select the vertex with the smallest

distance.
3 Update distances to adjacent vertices.
4 Repeat until all vertices are visited.

SDB Graph Theory - Comprehensive Topics Weighted Graphs 67 / 91

Dijkstra’s Algorithm II

Example:

A

B

C

D

1 2

3
4

5

Exercise:

Apply Dijkstra’s algorithm to find the shortest paths from vertex A.

SDB Graph Theory - Comprehensive Topics Weighted Graphs 68 / 91

Bellman-Ford Algorithm I

Goal: Compute shortest paths from a source to all vertices, even with
negative edge weights.

Steps:
1 Initialize distances to infinity, source to 0.
2 Relax all edges V − 1 times:

If d [u] + w(u, v) < d [v], then d [v] = d [u] + w(u, v).

3 Check for negative cycles on the V th iteration.

Complexity:
▶ Time: O(VE).
▶ Space: O(V).

SDB Graph Theory - Comprehensive Topics Weighted Graphs 69 / 91

Bellman-Ford Algorithm II

Exercise:
▶ Apply Bellman-Ford to the weighted graph below:

A

B

C

D

6 5

-3
2

-1

3

SDB Graph Theory - Comprehensive Topics Weighted Graphs 70 / 91

Complexity Analysis of Shortest Path Algorithms

Dijkstra’s Algorithm:
▶ Using Priority Queue: O((V + E) logV).
▶ Without Priority Queue: O(V 2).
▶ Limitation: Cannot handle negative weights.

Bellman-Ford Algorithm:
▶ Time Complexity: O(VE).
▶ Use Case: Handles negative weights and detects negative cycles.

Comparison:

Algorithm Time Complexity Handles Negative Weights
Dijkstra’s O((V + E) logV) No

Bellman-Ford O(VE) Yes

SDB Graph Theory - Comprehensive Topics Weighted Graphs 71 / 91

Applications of Weighted Graphs

Logistics:
▶ Optimize delivery routes by minimizing transportation costs.
▶ Example: Shortest paths in a road network for package delivery.

Navigation Systems:
▶ Google Maps and GPS use weighted graphs to find shortest routes.
▶ Weights represent distances or travel times.

Network Design:
▶ Design cost-effective communication networks.
▶ Example: Reducing data transmission costs in telecommunications.

Exercise:
▶ Model a real-world problem (e.g., warehouse logistics) as a weighted

graph.

SDB Graph Theory - Comprehensive Topics Weighted Graphs 72 / 91

Negative Edge Weights
Definition:

▶ Negative edge weights represent costs, losses, or reductions.

Challenges:
▶ Dijkstra’s algorithm fails with negative weights.
▶ Negative cycles can result in infinite reductions.

Solution: Bellman-Ford Algorithm
▶ Handles graphs with negative weights.
▶ Detects negative cycles.

Example:

A

B

C

D

2 -4

3
1

Exercise:
▶ Identify if the above graph contains a negative cycle.

SDB Graph Theory - Comprehensive Topics Weighted Graphs 73 / 91

Outline

1 Introduction

2 Types of Graphs

3 Common Terminologies in Graph

4 Subgraphs and Decompositions

5 Directed Graphs

6 Weighted Graphs

7 Special Graphs and Problems

Introduction to Counting and Bijections
Why is Counting Important in Graph Theory?

Counting methods help analyze the number of possible graphs,
spanning trees, matchings, and paths in a given structure.

Many combinatorial proofs in graph theory use bijections to establish
equivalences between different sets.

Applications include enumerative combinatorics, graph
isomorphism, network design, and probabilistic graph theory.

Bijections in Graph Theory:

A bijection is a one-to-one and onto mapping between two sets.

Establishing bijections helps in counting problems by reducing
complexity.

Example: Counting the number of spanning trees in a complete graph
using Cayley’s Formula.

Exercise:

Find a bijection between the set of paths in a graph and the set of
subgraphs of a given structure.

SDB Graph Theory - Comprehensive Topics Special Graphs and Problems 74 / 91

Basic Counting Principles in Graphs

Fundamental Counting Principles:

Addition Principle: If event A can occur in m ways and event B in n
ways (mutually exclusive), total ways = m + n.

Multiplication Principle: If task A has m choices and task B has n
choices (independent), total ways = m × n.

Examples in Graph Theory:

Number of labeled graphs with n vertices = 2(
n
2).

Number of different spanning trees in Kn (Cayley’s Theorem) = nn−2.

Counting paths and cycles in different graph structures.

Exercise:

How many simple graphs can be formed with 4 vertices?

Prove that the number of labeled trees with 5 vertices is 53 = 125.

SDB Graph Theory - Comprehensive Topics Special Graphs and Problems 75 / 91

Bijections and Counting Spanning Trees

Cayley’s Theorem: Counting Trees

The number of spanning trees of a complete graph Kn is given by:

T (Kn) = nn−2

Proof Idea: Use Prüfer codes, which establish a bijection between
labeled trees and sequences of length n − 2 over n.

Bijection Between Prüfer Sequences and Labeled Trees:

Each labeled tree corresponds uniquely to an (n − 2)-length Prüfer
sequence.

This allows a counting argument using the multiplication principle.

Exercise:

Construct the Prüfer sequence for some tree.

SDB Graph Theory - Comprehensive Topics Special Graphs and Problems 76 / 91

Counting Paths and Cycles in Graphs

Path and Cycle Counting in Graphs:

Number of paths of length k in a graph can be found using matrix
exponentiation:

Ak(i , j) = number of paths of length k from i to j .

Counting cycles in graphs is difficult, but known results include:
▶ Number of Hamiltonian cycles in Kn = (n − 1)!/2.
▶ Counting cycles using generating functions.

Applications:

Finding paths efficiently in network routing.

Counting cycles in circuit design and chemistry (e.g., ring
structures in molecules).

Exercise:

Compute A3 for the adjacency matrix of some graph.

SDB Graph Theory - Comprehensive Topics Special Graphs and Problems 77 / 91

Key Theorems and Proofs in Counting and Bijections

Theorem 1: Number of Spanning Trees in a Graph (Kirchhoff’s
Matrix-Tree Theorem)

Let L be the Laplacian matrix of a graph.

The number of spanning trees is given by:

T (G) = any cofactor of L.

Theorem 2: Counting Eulerian Circuits

The number of Eulerian circuits in a graph is given by a determinant
formula based on BEST theorem.

Proof Idea: Using Linear Algebra: The determinant of a reduced
Laplacian matrix gives the number of spanning trees.

Exercise:

Compute the number of spanning trees for K4 using Kirchhoff’s
theorem.

SDB Graph Theory - Comprehensive Topics Special Graphs and Problems 78 / 91

Introduction to Extremal Graph Theory
What is Extremal Graph Theory?

Extremal graph theory studies the maximum or minimum values of
graph properties under given constraints.
It asks questions like:

▶ What is the largest number of edges a graph can have while avoiding a
specific subgraph?

▶ What is the smallest number of edges required for a certain property
to hold?

Famous Examples of Extremal Problems:

Turán’s Theorem: What is the maximum number of edges in a
Kr+1-free graph?

Erdős-Stone Theorem: Generalizing Turán’s theorem for arbitrary
forbidden subgraphs.

Mantel’s Theorem: Maximum edges in a triangle-free graph.
Exercise:

Find the maximum number of edges in a bipartite graph with n vertices.

Prove that any connected graph with n vertices must have at least n − 1 edges.

SDB Graph Theory - Comprehensive Topics Special Graphs and Problems 79 / 91

Turán’s Theorem I

Statement: The maximum number of edges in an n-vertex graph that
does not contain a complete subgraph Kr+1 is:

ex(n,Kr+1) =

(
1− 1

r

)
n2

2
.

Proof Idea:

Construct the Turán graph Tr (n), an r-partite complete graph
with partitions of nearly equal size.

Show that adding any extra edge introduces a Kr+1.

Use combinatorial counting to verify the edge bound.

SDB Graph Theory - Comprehensive Topics Special Graphs and Problems 80 / 91

Turán’s Theorem II

Visual Example:

Exercise:

Construct T3(6) and count its edges.

Prove that the Turán graph Tr (n) minimizes the number of edges
needed to contain a Kr+1.

SDB Graph Theory - Comprehensive Topics Special Graphs and Problems 81 / 91

Mantel’s Theorem (Triangle-Free Graphs)
Statement: A triangle-free graph with n vertices has at most ⌊n2/4⌋
edges.
Proof (Extremal Argument):

Consider a bipartite graph with equal partition sizes.

Any triangle-free graph with maximum edges must be bipartite.

The largest bipartite graph is complete bipartite K⌊n/2⌋,⌈n/2⌉, which
has ⌊n2/4⌋ edges.

General Graph (with triangles)

A
B

C

D

Maximal Triangle-Free Graph

A
B

C

D

Exercise:

Prove Mantel’s Theorem using an adjacency matrix approach.

Show that a maximal triangle-free graph must be bipartite.

SDB Graph Theory - Comprehensive Topics Special Graphs and Problems 82 / 91

Real-World Applications of Extremal Problems
Where Are Extremal Graphs Used?

Network Design: Ensuring robustness while minimizing resource
usage.
Biology: Studying evolutionary relationships using extremal trees.
Coding Theory: Help in error correction code design.
Social Networks: Modeling influence networks with extremal
properties.

Example: Internet Backbone Network

Designing an internet routing graph with maximum connectivity
while minimizing redundancy.
Ensuring the minimum number of links required for a stable
network.

Exercise:

Find a real-world scenario where limiting triangle formation is
beneficial.
Research how extremal graph theory helps in wireless sensor network
optimization.
SDB Graph Theory - Comprehensive Topics Special Graphs and Problems 83 / 91

Eulerian Graphs

A graph is Eulerian if it contains an Eulerian cycle (a cycle visiting
every edge exactly once).

Necessary and Sufficient condition: All vertices have an even degree.

A

B

C

D

E

F

Exercise:

Determine if a given graph is Eulerian.

Question to Ponder: Can a graph with an odd-degree vertex be Eulerian?

SDB Graph Theory - Comprehensive Topics Special Graphs and Problems 84 / 91

Koenigsberg Bridges Problem I

The Koenigsberg Bridge Problem (posed in 1736) is a historical
problem in graph theory.

Goal: To determine if it is possible to traverse all seven bridges in the
city of Koenigsberg exactly once and return to the starting point.

A D

C

B

SDB Graph Theory - Comprehensive Topics Special Graphs and Problems 85 / 91

Koenigsberg Bridges Problem II

Key Insight: Euler proved it is impossible to traverse the graph in such a
way, as all vertices in the graph have an odd degree.
Exercise:

Analyze the graph to identify the vertex degrees.

Prove why it is not Eulerian.

Question to Ponder: How did this problem shape the foundations of
graph theory?

SDB Graph Theory - Comprehensive Topics Special Graphs and Problems 86 / 91

Eulerian Digraphs

A directed graph is Eulerian if it has a directed Eulerian cycle.

Necessary and Sufficient condition: In-degree equals out-degree for
every vertex.

A B

C

Exercise:

Verify the Eulerian property for the above graph.

Question to Ponder: How does the Eulerian condition differ in directed
graphs?

SDB Graph Theory - Comprehensive Topics Special Graphs and Problems 87 / 91

Hamiltonian Graphs I

A Hamiltonian graph contains a Hamiltonian cycle, which is a cycle
that visits each vertex exactly once and returns to the starting vertex.

Not all graphs are Hamiltonian.

Sufficient conditions for a graph to be Hamiltonian:
▶ Dirac’s Theorem: If a graph with n vertices (n ≥ 3) has

deg(v) ≥ n/2 for all vertices v , it is Hamiltonian.
▶ Ore’s Theorem: If deg(u) + deg(v) ≥ n for all non-adjacent vertices u

and v , the graph is Hamiltonian.

SDB Graph Theory - Comprehensive Topics Special Graphs and Problems 88 / 91

Hamiltonian Graphs II

Example:

A B

C D

E

Exercise:

Determine if the given graph satisfies Dirac’s or Ore’s condition.

Verify if a complete graph Kn is Hamiltonian.

Question to Ponder: How do Hamiltonian graphs differ from Eulerian
graphs in terms of edge and vertex traversal?

SDB Graph Theory - Comprehensive Topics Special Graphs and Problems 89 / 91

Comprehensive Summary I

Basic Concepts:
▶ Graph types: Simple, directed, undirected, complete, bipartite, etc.
▶ Graph properties: Degrees, adjacency, connectivity.
▶ Graph representations: Adjacency matrix, adjacency list.

Core Topics:
▶ Paths, cycles, walks: Definitions and examples.
▶ Subgraphs, cut vertices, cut edges: Importance in connectivity.
▶ Degree sequences: Understanding graph properties.
▶ Graph operations: Union, intersection, and complement.

Advanced Topics:
▶ Weighted graphs:

⋆ Definition and real-world applications (logistics, navigation, networks).
⋆ Adjacency matrix for weighted graphs.

▶ Shortest path algorithms:
⋆ Dijkstra’s algorithm: Fast and efficient for positive weights.
⋆ Bellman-Ford algorithm: Handles negative weights and detects cycles.

SDB Graph Theory - Comprehensive Topics Summary 90 / 91

Comprehensive Summary II

Additional Insights:
▶ Complexity analysis of algorithms:

⋆ Dijkstra’s: O((V + E) logV).
⋆ Bellman-Ford: O(VE).

▶ Limitations of negative weights in shortest path problems.

Key Takeaways:
▶ Graph theory provides powerful tools to model and solve real-world

problems.
▶ Weighted graphs and their algorithms are foundational for optimization.
▶ Algorithm selection depends on graph properties, such as the presence

of negative weights.

SDB Graph Theory - Comprehensive Topics Summary 91 / 91

Outline

8 Appendix
Matrices
DAG
More on Graph Types
More Properties
More Graph Terminologies
Shortest Paths
Handy Proofs and Results
More Problems to Explore

Outline

8 Appendix
Matrices
DAG
More on Graph Types
More Properties
More Graph Terminologies
Shortest Paths
Handy Proofs and Results
More Problems to Explore

Adjacency Matrix and Incidence Matrix I

Adjacency Matrix:
▶ A square matrix A of size n × n, where n = |V | (number of vertices).
▶ The entry A[i][j] represents the number of edges between vertices vi

and vj :

A[i][j] =

{
1, if (vi , vj) ∈ E (undirected);

0, otherwise.

▶ Properties:
⋆ For undirected graphs: A is symmetric.
⋆ For simple graphs: Diagonal entries A[i][i] = 0.
⋆ For weighted graphs: A[i][j] stores the weight of edge (vi , vj).

Incidence Matrix:
▶ A matrix I of size n ×m, where n = |V | and m = |E |.
▶ The entry I [i][j] indicates the relationship between vertex vi and edge

ej :

I [i][j] =


1, if vi is incident to ej (directed start);

−1, if vi is incident to ej (directed end);

0, otherwise.

SDB Graph Theory - Comprehensive Topics Appendix Matrices 1 / 127

Adjacency Matrix and Incidence Matrix II

▶ Properties:
⋆ For undirected graphs: I [i][j] = 1 for all vertices incident to ej .
⋆ Sum of entries in each column equals 0 for directed graphs.

A

B

C

D

Adjacency Matrix:

A =


0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0


Incidence Matrix:

I =


1 0 0 1 0
1 1 0 0 1
0 1 1 0 0
0 0 1 1 1


SDB Graph Theory - Comprehensive Topics Appendix Matrices 2 / 127

Adjacency Matrix and Incidence Matrix III

Exercise:

Construct the adjacency and incidence matrices for a complete graph
K4.

Prove: The sum of each row in the adjacency matrix equals the
degree of the corresponding vertex.

SDB Graph Theory - Comprehensive Topics Appendix Matrices 3 / 127

Path Matrix I

Definition: A path matrix P is an n × n matrix where n = |V |
(number of vertices).
– The entry P[i][j] represents whether there is a path from vertex vi
to vertex vj :

P[i][j] =

{
1, if there exists a path from vi to vj ;

0, otherwise.

Construction:
▶ Compute the powers of the adjacency matrix A:

Ak [i][j] represents the number of paths of length k from vi to vj .

▶ The path matrix P is obtained by summing the binary forms of
A,A2,A3, . . . :

P[i][j] = 1 if (A+ A2 + · · ·+ An)[i][j] > 0.

SDB Graph Theory - Comprehensive Topics Appendix Matrices 4 / 127

Path Matrix II

A

B

C

D

Path Matrix:

P =


1 1 1 0
0 1 1 0
0 0 1 0
1 0 1 1


Exercise:

Compute the path matrix for a graph with |V | = 3 and edges:
{(A,B), (B,C)}.
Prove that for a strongly connected graph, P[i][j] = 1 for all i , j .

SDB Graph Theory - Comprehensive Topics Appendix Matrices 5 / 127

Adjacency Matrix for Directed and Weighted Graphs I

Directed Graphs:
▶ In a directed graph, A[i][j] = 1 if there is a directed edge from vi to vj ,

otherwise A[i][j] = 0.
▶ The adjacency matrix is generally not symmetric.

Weighted Graphs:
▶ In a weighted graph, A[i][j] represents the weight of the edge (vi , vj):

A[i][j] =

{
w , if edge (vi , vj) exists with weight w ;

0, otherwise.

▶ For directed weighted graphs, weights depend on edge direction.

SDB Graph Theory - Comprehensive Topics Appendix Matrices 6 / 127

Adjacency Matrix for Directed and Weighted Graphs II

Graph:

A

B

C

D

3 5

72

Adjacency Matrix:

A =


0 3 0 0
0 0 5 0
0 0 0 7
2 0 0 0


Exercise:

Compute the adjacency matrix for a directed acyclic graph (DAG)
with 4 vertices.

Verify that the adjacency matrix for a directed graph is not symmetric
unless all edges are bidirectional.

SDB Graph Theory - Comprehensive Topics Appendix Matrices 7 / 127

Incidence Matrix for Directed and Weighted Graphs I

Directed Graphs:
▶ In a directed graph, I [i][j] = 1 if vertex vi is the start of edge ej , and

I [i][j] = −1 if vi is the end of edge ej .
▶ All other entries are 0.

Weighted Graphs:
▶ For weighted graphs, the weight of edge ej is included:

I [i][j] =


w , if vi is the start of ej ;

−w , if vi is the end of ej ;

0, otherwise.

SDB Graph Theory - Comprehensive Topics Appendix Matrices 8 / 127

Incidence Matrix for Directed and Weighted Graphs II

Graph:

A

B

C

D

3 5

72

Incidence Matrix:

I =


3 0 0 −2
−3 5 0 0
0 −5 7 0
0 0 −7 2


Exercise:

Construct the incidence matrix for a directed cycle graph with 3
vertices.

Prove that the sum of each column in the incidence matrix equals
zero for directed graphs.

SDB Graph Theory - Comprehensive Topics Appendix Matrices 9 / 127

Path Matrix for Directed and Weighted Graphs
Directed Graphs:

▶ P[i][j] = 1 if there exists a directed path from vertex vi to vj ;
otherwise, P[i][j] = 0.

Weighted Graphs:
▶ P[i][j] stores the weight of the shortest path between vi and vj :

P[i][j] =

{
min weight of paths from vi to vj , if path exists;

∞, otherwise.

Applications:
▶ Determining connectivity in directed graphs.
▶ Computing shortest paths in weighted graphs (Floyd-Warshall

Algorithm).

Exercise:

Compute the path matrix for a weighted graph with weights
{3, 5, 7, 2} as shown earlier.

Verify the Floyd-Warshall Algorithm to compute the shortest path
matrix for a directed graph.

SDB Graph Theory - Comprehensive Topics Appendix Matrices 10 / 127

Other Graph Matrices

Distance Matrix:
▶ A matrix D where D[i][j] represents the shortest distance (number of

edges or weights) between vertices vi and vj .
▶ For unconnected vertices, D[i][j] = ∞.

Laplacian Matrix:
▶ A matrix L = D − A, where D is the degree matrix (diagonal entries

are vertex degrees) and A is the adjacency matrix.
▶ Used in spectral graph theory to study properties like connectivity.

Transition Probability Matrix (for Random Walks):
▶ A matrix P where P[i][j] represents the probability of transitioning

from vertex vi to vj in a random walk.
▶ Entries: P[i][j] = 1

deg(vi)
if (i , j) ∈ E ; otherwise, 0.

Exercise:

Construct the Laplacian matrix for a star graph K1,4.

Compute the distance matrix for a path graph P4.

SDB Graph Theory - Comprehensive Topics Appendix Matrices 11 / 127

Outline

8 Appendix
Matrices
DAG
More on Graph Types
More Properties
More Graph Terminologies
Shortest Paths
Handy Proofs and Results
More Problems to Explore

Directed Acyclic Graph (DAG) I

Definition: A Directed Acyclic Graph (DAG) is a directed graph
with no directed cycles.

G = (V ,E) where no sequence of edges forms a cycle.

Properties:
▶ DAGs have a topological ordering of vertices: For every edge (u, v),

vertex u appears before v in the ordering.
▶ Every DAG has at least one source (a vertex with in-degree 0) and one

sink (a vertex with out-degree 0).
▶ DAGs are used to model dependencies, where cycles are not allowed.

Applications:
▶ Task Scheduling: Representing tasks with dependencies (e.g., job

scheduling, build systems).
▶ Dataflow Analysis: Representing computation pipelines.
▶ Shortest Path in Weighted Graphs: DAGs allow efficient shortest path

computation using topological sorting.

SDB Graph Theory - Comprehensive Topics Appendix DAG 12 / 127

Directed Acyclic Graph (DAG) II

DAG Visualization:

A

B

C

D

Key Observations:

Sources: A (in-degree 0).

Sinks: C (out-degree 0).

Topological Order: A → B → D → C .

Exercise:

Verify that the given graph is a DAG.

Construct the topological ordering for the graph.

Prove that a graph with a cycle cannot be a DAG.

SDB Graph Theory - Comprehensive Topics Appendix DAG 13 / 127

Topological Sorting: DFS-Based Algorithm I

Purpose: Produces a topological ordering of vertices in a DAG
using Depth-First Search (DFS).

Algorithm Steps:
1 Initialize an empty stack S and mark all vertices as unvisited.
2 For each vertex v : If v is unvisited, perform a DFS starting from v :

1 Mark v as visited.

2 For each neighbor u of v , recursively perform DFS if u is unvisited.

3 Push v onto S after processing all its neighbors.

3 Once all vertices are visited, the stack S contains the topological order
in reverse.

Time Complexity: O(V + E).

SDB Graph Theory - Comprehensive Topics Appendix DAG 14 / 127

Topological Sorting: DFS-Based Algorithm II

DAG:

A

B

C

D

Steps:

1 Start DFS at A: Process B,D,C
recursively.

2 Push vertices to stack after processing:
Stack = [C ,D,B,A].

3 Topological Order: A → B → D → C .

Exercise:

Implement the DFS-based algorithm for a DAG with 5 vertices.

Prove that the algorithm outputs a valid topological order for all
DAGs.

SDB Graph Theory - Comprehensive Topics Appendix DAG 15 / 127

Outline

8 Appendix
Matrices
DAG
More on Graph Types
More Properties
More Graph Terminologies
Shortest Paths
Handy Proofs and Results
More Problems to Explore

Multigraph and Pseudograph I

Graph theory extends beyond simple graphs to include structures like
pseudographs and multigraphs.

These generalized graphs allow loops and multiple edges between the
same pair of vertices.

Definition of a Multigraph

A multigraph is a graph that allows multiple edges (parallel edges)
between the same pair of vertices.

However, it does not allow self-loops.

Definition of a Pseudograph

A pseudograph is a generalization of a multigraph that allows both
multiple edges and self-loops.

Self-loops are edges that connect a vertex to itself.

SDB Graph Theory - Comprehensive Topics Appendix More on Graph Types 16 / 127

Multigraph and Pseudograph II

Comparison: Multigraph vs. Pseudograph

Multigraph: Multiple edges allowed, but no self-loops.

Pseudograph: Multiple edges and self-loops allowed.

Both are useful in modeling real-world networks with redundant
connections.

Multigraph Example:

A B

C

The above diagram represents a
multigraph with multiple edges
between vertices.

Pseudograph Example:

A B

The above diagram represents a
pseudograph with a self-loop at
vertex A.

SDB Graph Theory - Comprehensive Topics Appendix More on Graph Types 17 / 127

Multigraph and Pseudograph III

Exercises

Draw a multigraph with four vertices and at least one pair of parallel
edges.

Construct a pseudograph with three vertices, at least one self-loop,
and one pair of parallel edges.

Identify real-world scenarios where multigraphs and pseudographs are
useful.

Conclusion

Understanding these generalized graphs expands the applicability of
graph theory.

They provide more flexibility in modeling complex systems with
repeated interactions.

SDB Graph Theory - Comprehensive Topics Appendix More on Graph Types 18 / 127

Types of Complete Graphs I

Definition: A complete graph Kn is a simple graph in which every
pair of distinct vertices is connected by a unique edge.

Types of Complete Graphs:
▶ Undirected Complete Graph Kn:

⋆ Contains n vertices and
(
n
2

)
= n(n−1)

2
edges.

⋆ All edges are bidirectional.

▶ Directed Complete Graph (Tournament Graph):
⋆ Every pair of distinct vertices is connected by two directed edges (one

in each direction).
⋆ Contains n(n − 1) edges.

▶ Complete Bipartite Graph Km,n:
⋆ Bipartite graph where every vertex in set U is connected to every vertex

in set V .
⋆ Contains m · n edges.

SDB Graph Theory - Comprehensive Topics Appendix More on Graph Types 19 / 127

Types of Complete Graphs II

Examples:

A

B

C

D

Undirected Complete Graph K4

U1

U2

V1

V2

V3

Complete Bipartite Graph K2,3

Exercise:
▶ Calculate the number of edges in K5 and K3,4.
▶ Prove: A complete bipartite graph Km,n is 2-colorable.

SDB Graph Theory - Comprehensive Topics Appendix More on Graph Types 20 / 127

Extended Types of Complete Graphs I

Weighted Complete Graph:
▶ A complete graph where each edge is assigned a numerical weight.
▶ Used in optimization problems like Traveling Salesman Problem (TSP)

and network design.

Applications of Complete Graphs:
▶ Communication Networks:

⋆ Fully connected networks where every device communicates with every
other device.

▶ Optimization Problems:
⋆ Solve TSP to find the shortest route visiting all nodes exactly once.

▶ Tournament Scheduling:
⋆ Directed complete graphs model round-robin tournaments where each

team plays every other team.

SDB Graph Theory - Comprehensive Topics Appendix More on Graph Types 21 / 127

Extended Types of Complete Graphs II

A

B

C

D

4

3

2

5

1

6

Weighted Complete Graph K4

X1

X2

X3

X4

Directed Complete Graph
−→
K4

Exercise:
▶ Compute the total weight of the minimum spanning tree in the

weighted graph above.
▶ Verify if the directed graph satisfies strong connectivity.

SDB Graph Theory - Comprehensive Topics Appendix More on Graph Types 22 / 127

Solving the Traveling Salesman Problem (TSP) I

Problem Statement: Given a weighted complete graph Kn, find the
shortest possible route that visits each vertex exactly once and returns
to the starting vertex.

Mathematical Formulation: Minimize the total weight of the cycle:

Minimize
∑

(u,v)∈E

w(u, v) · xuv ,

where xuv = 1 if edge (u, v) is in the solution, and 0 otherwise.

Approximation Algorithms:
▶ Nearest Neighbor Algorithm: Start at a vertex and repeatedly visit the

nearest unvisited vertex.
▶ Christofides Algorithm: Produces a solution at most 1.5× the optimal

solution for metric graphs.

SDB Graph Theory - Comprehensive Topics Appendix More on Graph Types 23 / 127

Solving the Traveling Salesman Problem (TSP) II

Applications:
▶ Logistics: Optimizing delivery routes.
▶ Circuit Design: Minimizing wire lengths in chip design.

Example:

A

B

C

D

4 3

1 5
2

6

Exercise:

Use the Nearest Neighbor Algorithm to find an approximate solution
for the TSP.

Verify the total weight of the solution.

SDB Graph Theory - Comprehensive Topics Appendix More on Graph Types 24 / 127

Outline

8 Appendix
Matrices
DAG
More on Graph Types
More Properties
More Graph Terminologies
Shortest Paths
Handy Proofs and Results
More Problems to Explore

Walks and Paths – Existence of a Path
Theorem: If there is a walk between two vertices u and v , then there is a
path between them.
Proof:

Suppose there exists a walk W from u to v .

If W is already a path, we are done.

Otherwise, W contains repeated vertices.

Remove the segment between the first and second occurrence of any repeated
vertex.

Repeat this process until no vertex appears more than once.

The resulting sequence is a path.

Corollary: Any two vertices in a connected graph are linked by at least
one path.
Real-World Application:

Transportation Networks: If a city map allows reaching one
location from another, then a direct, non-redundant route can always
be extracted.

Internet Routing: Any redundant communication path can be
reduced to a simpler direct route.
SDB Graph Theory - Comprehensive Topics Appendix More Properties 25 / 127

Closed Walks and Cycles

Theorem: If there is a closed walk in a graph, then the graph contains a
cycle.
Proof:

Suppose there is a closed walk W that starts and ends at vertex v .

If W is already a cycle, we are done.

Otherwise, W contains repeated vertices.

The sub-walk from the first occurrence of a repeated vertex to its
next occurrence forms a cycle.

Corollary: Any graph containing a closed walk also contains at least one
cycle.
Real-World Application:

Electrical Circuits: If a current follows a closed walk in a circuit,
then some component forms a repeating cycle.

Airline Networks: Any round-trip flight route implies the existence
of a repeating flight cycle.

SDB Graph Theory - Comprehensive Topics Appendix More Properties 26 / 127

Trails and Eulerian Subgraphs

Theorem: If a graph has a closed trail, then it contains an Eulerian
subgraph.
Proof:

A closed trail visits vertices and edges without repeating edges.

If a vertex appears more than once, its incident edges form cycles.

The edge set of any closed trail can be decomposed into a union of
cycles.

Thus, the graph contains an Eulerian subgraph.

Corollary: Any graph with a closed trail must contain a cycle.
Real-World Application:

Postal Delivery Routes (Chinese Postman Problem): If a mail
carrier’s route follows a closed trail, they must visit each location in a
structured cycle.

Urban Planning: Road networks must ensure Eulerian subgraphs
exist for traffic flow optimization.

SDB Graph Theory - Comprehensive Topics Appendix More Properties 27 / 127

Eulerian Circuits and Degree Conditions

Theorem: A connected graph has an Eulerian circuit if and only if every
vertex has even degree.
Proof:

Suppose a graph has an Eulerian circuit.

Each visit to a vertex must have a corresponding exit.

Since edges must be used in pairs, each vertex must have an even
degree.

Corollary: Any graph with an Eulerian circuit must be connected and
have all even-degree vertices.
Real-World Application:

Network Packet Routing: Ensuring all servers receive equal traffic
distribution requires Eulerian circuits.

Manufacturing and Robotics: Automated machines following
Eulerian paths minimize repetitive movements.

SDB Graph Theory - Comprehensive Topics Appendix More Properties 28 / 127

Hamiltonian Cycles and Spanning Paths

Theorem 5: A Hamiltonian cycle implies multiple spanning paths.
Proof:

Suppose a graph has a Hamiltonian cycle.

Any removal of one edge from the cycle results in a spanning path.

Multiple spanning paths can be constructed by considering different
edge deletions.

Corollary: Any Hamiltonian graph has a spanning subgraph with at least
one path covering all vertices.
Real-World Application:

Traveling Salesperson Problem: Finding optimal routes that visit
all cities efficiently.

Genome Sequencing: Constructing DNA fragment sequences using
Hamiltonian paths.

SDB Graph Theory - Comprehensive Topics Appendix More Properties 29 / 127

Key Takeaways
Key Results:

Walk to Path: If there is a walk, there is a path.

Closed Walk to Cycle: Every closed walk contains a cycle.

Trail to Eulerian Subgraph: Every closed trail contains an Eulerian subgraph.

Eulerian Circuit Condition: A connected graph has an Eulerian circuit if and only
if all vertices have even degree.

Hamiltonian Cycle to Paths: Every Hamiltonian cycle implies multiple spanning
paths.

Real-World Applications:
Transportation & Routing: Eulerian and Hamiltonian properties optimize delivery
and travel.

Data Networks: Packet routing, redundancy minimization, and internet traffic
balancing.

Circuit Design: Electrical networks use Eulerian paths for efficient wiring.

AI & Machine Learning: Graph-based search optimization in AI applications.

Further Study:
Research extremal graph properties for Hamiltonian and Eulerian graphs.

Explore computational complexity of finding Eulerian and Hamiltonian paths.

SDB Graph Theory - Comprehensive Topics Appendix More Properties 30 / 127

Properties of Tournaments I

Definition: A tournament is a directed graph (digraph) where every
pair of vertices is connected by exactly one directed edge. - For every
pair of vertices u and v , either (u → v) ∈ E or (v → u) ∈ E .

Properties of Tournaments:
▶ Hamiltonian Path: Every tournament has at least one Hamiltonian

path (a directed path visiting all vertices exactly once).
▶ Strong Connectivity: A tournament is strongly connected if and only

if for every pair of vertices u, v ∈ V , there exists a directed path from
u to v and vice versa.

▶ Score Sequence: The out-degree sequence of vertices (also known as
the score sequence) uniquely determines the tournament up to
isomorphism.

▶ Transitivity: A tournament is transitive if there exists an ordering of
vertices such that all edges point in the same direction according to the
ordering.

▶ Cycles: Any non-transitive tournament contains directed cycles.

SDB Graph Theory - Comprehensive Topics Appendix More Properties 31 / 127

Properties of Tournaments II

Special Types of Tournaments:
▶ Regular Tournament: A tournament is regular if all vertices have the

same in-degree and out-degree.
▶ Strong Tournament: A tournament is strong if it is strongly

connected.

Visualization:

A

B

C

D

Hamiltonian Path: A → B → C → D.

SDB Graph Theory - Comprehensive Topics Appendix More Properties 32 / 127

Properties of Tournaments III

Exercise:

Prove that every tournament has at least one vertex with out-degree
⌊(n − 1)/2⌋.
Find the number of directed cycles in a tournament with 4 vertices.

Verify if the example tournament graph is strongly connected.

Find a Hamiltonian path for the tournament.

SDB Graph Theory - Comprehensive Topics Appendix More Properties 33 / 127

Algorithms for Tournaments I

Finding a Hamiltonian Path:
▶ Input: A tournament T = (V ,E) with |V | = n.
▶ Output: A Hamiltonian path.
▶ Algorithm (Greedy):

1 Start with any vertex as the first in the path.
2 Iteratively insert each remaining vertex into the current path:
3 Place it after the last vertex u if there is a directed edge u → v .
4 Otherwise, place it before u.
5 Continue until all vertices are included.

Strong Connectivity Check:
▶ Use DFS or BFS from any vertex v :

⋆ If all vertices are reachable, the tournament is strongly connected.
⋆ Otherwise, it is not strong.

Applications of Algorithms:
▶ Scheduling problems (e.g., round-robin tournaments).
▶ Ranking systems (e.g., sports or voting results).

SDB Graph Theory - Comprehensive Topics Appendix More Properties 34 / 127

Algorithms for Tournaments II

Exercise:

Write a Python program to find a Hamiltonian path in a tournament
using the greedy algorithm.

Prove the time complexity of the greedy algorithm for finding a
Hamiltonian path is O(n2).

SDB Graph Theory - Comprehensive Topics Appendix More Properties 35 / 127

Applications of Tournaments I

Sports Scheduling:
▶ Representing a round-robin tournament where each team plays against

every other team exactly once.
▶ Directed edges indicate the winner of each match.

Ranking Systems:
▶ Modeling pairwise comparisons in voting or ranking systems.
▶ Use the Hamiltonian path to infer a ranked order.

Decision-Making:
▶ Modeling preferences in decision-making processes.
▶ Example: Comparing alternatives in a decision tree.

SDB Graph Theory - Comprehensive Topics Appendix More Properties 36 / 127

Applications of Tournaments II

Social Networks:
▶ Modeling dominance or influence between individuals.

Computational Problems:
▶ Solving problems like finding minimal feedback arc sets to convert

tournaments into directed acyclic graphs (DAGs).

Exercise:

Create a tournament graph for a 6-team round-robin sports league.
Indicate the results of matches using directed edges.

Describe how a Hamiltonian path could be used to rank the teams.

SDB Graph Theory - Comprehensive Topics Appendix More Properties 37 / 127

Connected, Disconnected, Strongly Connected Graphs I

Connected Graph: A graph is connected if there is a path between
every pair of vertices.

∀u, v ∈ V , there exists a path from u to v .

Disconnected Graph: A graph is disconnected if it has two or more
components (i.e., not all vertices are reachable from each other).

Strongly Connected Graph (Directed Graphs): A directed graph
is strongly connected if there is a directed path between every pair of
vertices:

∀u, v ∈ V , there exists a path u → v and v → u.

SDB Graph Theory - Comprehensive Topics Appendix More Properties 38 / 127

Connected, Disconnected, Strongly Connected Graphs II

Examples:

A

B

C

D

E

F

G H

I

Exercise:

Determine whether the graphs above are connected, disconnected, or
strongly connected.

Provide a real-world example of each type.

SDB Graph Theory - Comprehensive Topics Appendix More Properties 39 / 127

List of Special Graphs

Complete Graph (Kn): Every pair of vertices is connected by an
edge. - n vertices,

(n
2

)
edges.

Bipartite Graph: Vertex set can be divided into two disjoint subsets
U and V such that no edge connects vertices within the same subset.

Complete Bipartite Graph (Km,n): Every vertex in U is connected
to every vertex in V . - m · n edges.

Star Graph (K1,n): A complete bipartite graph with one vertex in U
and n vertices in V .

Cycle Graph (Cn): A graph that forms a single cycle with n vertices
and n edges.

Wheel Graph (Wn): A cycle graph with an additional central
vertex connected to all others.

Path Graph (Pn): A graph consisting of a single path with n
vertices.

Tree: A connected acyclic graph.

SDB Graph Theory - Comprehensive Topics Appendix More Properties 40 / 127

Complete Graphs - Example and Properties
Properties of Complete Graphs (Kn):

▶ Number of edges:
(
n
2

)
= n(n−1)

2 .
▶ Chromatic number: n (each vertex requires a unique color).
▶ Diameter: 1 (for n ≥ 2) since every vertex is directly connected.

Example (K4):

A

B

C

D

Exercise:

Draw K5. Verify the number of edges and chromatic number.

SDB Graph Theory - Comprehensive Topics Appendix More Properties 41 / 127

Cycle Graphs and Wheel Graphs
Cycle Graph (Cn):

▶ Consists of n vertices and n edges, forming a single cycle.
▶ Even cycles are bipartite, odd cycles are not.

Wheel Graph (Wn):
▶ Formed by adding a central vertex to a cycle graph and connecting it

to all other vertices.
▶ Total edges: 2n − 2.

A

B

C

DE

O

A B

C

DE

Exercise:

Prove that Wn is not bipartite for n ≥ 4.
SDB Graph Theory - Comprehensive Topics Appendix More Properties 42 / 127

Real-World Applications of Special Graphs

Complete Graphs:
▶ Social Networks: Modeling complete interaction between individuals.
▶ Network Design: Representing fully connected networks for

communication.

Cycle Graphs:
▶ Traffic Systems: Modeling circular routes in cities.
▶ Periodic Processes: Representing cyclic phenomena.

Wheel Graphs:
▶ Hub-and-Spoke Networks: Representing airline routes or logistics hubs.
▶ Star Topology: Centralized communication networks.

Path Graphs:
▶ Linear Pipelines: Modeling linear workflows or transport routes.

Bipartite Graphs:
▶ Job Assignment Problems: Matching jobs with workers.
▶ Recommendation Systems: Linking users with products.

SDB Graph Theory - Comprehensive Topics Appendix More Properties 43 / 127

Graph Isomorphism I

Graph Isomorphism: A bijective function between the vertices of
two graphs that preserves the adjacency of vertices.

Two graphs are isomorphic if there exists an isomorphism between
them.

A

B

C

D

E

F

G

H

1 2

34

5 6

78

Figure: Isomorphic Graphs

SDB Graph Theory - Comprehensive Topics Appendix More Properties 44 / 127

Graph Isomorphism II
Properties of Graph Isomorphism:

Reflexive: A graph is isomorphic to itself.

Symmetric: If G1 is isomorphic to G2, then G2 is isomorphic to G1.

Transitive: If G1 is isomorphic to G2 and G2 is isomorphic to G3,
then G1 is isomorphic to G3.

Graph Isomorphism Theorem:

Two graphs are isomorphic if and only if they have the same:
▶ Number of vertices
▶ Number of edges
▶ Degree sequence
▶ Adjacency matrix

Note: Examples of Graph Isomorphism

Same Graph, Different Drawings: Two graphs that are drawn
differently but have the same structure are isomorphic.

Renaming Vertices: Two graphs that differ only in the names of
their vertices are isomorphic.

SDB Graph Theory - Comprehensive Topics Appendix More Properties 45 / 127

Applications of Complement Graphs I

Graph Algorithms:
▶ Problems on cliques and independent sets can be interchanged using

the complement graph:

Clique in G =⇒ Independent Set in G .

▶ Example: To find the maximum independent set in G , find the largest
clique in G .

Network Design:
▶ Use G to study alternative connectivity patterns in a network.
▶ Example: Minimizing redundant connections by analyzing edges not in

G .

Graph Coloring:
▶ The chromatic number of G can give insights into the graph coloring

of G :
χ(G) + χ(G) ≥ |V |.

SDB Graph Theory - Comprehensive Topics Appendix More Properties 46 / 127

Applications of Complement Graphs II

Real-World Applications:
▶ Social Networks: G represents pairs of individuals who do not share

a direct connection.
▶ Logistics: Complement graphs help identify critical connections by

studying the missing edges.

Exercise:

Prove that for a complete graph Kn, Kn = ∅.
Show that G and G cannot both be disconnected.

Verify that P4 and its complement P4 together form K4.

Prove that for any cycle graph Cn, its complement Cn is disconnected
when n > 4.

SDB Graph Theory - Comprehensive Topics Appendix More Properties 47 / 127

Proofs of Complement Graph Properties I

Property 1: G and G together form a complete graph Kn.

Proof.

Let G = (V ,E) and G = (V ,E). For every pair of vertices u, v ∈ V :

▶ If (u, v) ∈ E , it is an edge in G .

▶ If (u, v) /∈ E , it is an edge in G .

Since every pair of vertices is either connected in G or in G :

E ∪ E = E (Kn).

Hence, G ∪ G = Kn.

SDB Graph Theory - Comprehensive Topics Appendix More Properties 48 / 127

Proofs of Complement Graph Properties II

Property 2: The number of edges in G is
(|V |

2

)
− |E |.

Proof.

The total number of edges in a complete graph Kn is
(|V |

2

)
. Since G and

G share no edges:

|E | =
(
|V |
2

)
− |E |.

SDB Graph Theory - Comprehensive Topics Appendix More Properties 49 / 127

Proofs of Complement Graph Properties III

Property 3: G = G .

Proof.

By definition, E = {(u, v) | (u, v) /∈ E}. Taking the complement again
gives:

E = {(u, v) | (u, v) /∈ E} = E .

Hence, G = G .

SDB Graph Theory - Comprehensive Topics Appendix More Properties 50 / 127

Applications of Complement Graphs in Algorithms
Clique and Independent Set Problems:

▶ Finding a maximum independent set in G is equivalent to finding a
maximum clique in G .

▶ Complement graphs simplify problems in computational graph theory.

Planarity Testing:
▶ Complement graphs are used to test if a graph is planar by analyzing

edge density.

Network Analysis:
▶ Designing complementary networks to explore missing connectivity.
▶ Example: Redundant link placement in communication networks.

Graph Coloring:
▶ Complement graphs help in studying chromatic properties:

χ(G) + χ(G) ≥ |V |.

Exercise:

Prove: If G is a tree, G is a disconnected graph.

Determine if the complement graph of a bipartite graph can have
odd-length cycles.
SDB Graph Theory - Comprehensive Topics Appendix More Properties 51 / 127

Advanced Counting Techniques in Graph Theory

Why Advanced Counting?

Traditional counting methods may become inefficient for large graphs.

Advanced techniques like generating functions and probabilistic
counting help in handling complex structures.

Applications include network reliability, molecular chemistry,
social network analysis, and combinatorial optimization.

Topics Covered:

Generating functions for counting labeled and unlabeled graphs.

Probabilistic counting methods in random graphs.

Real-world applications in network topology, data clustering,
and statistical physics.

Exercise:

Why is generating function analysis useful in counting spanning trees?

How does probability help in estimating large combinatorial counts?

SDB Graph Theory - Comprehensive Topics Appendix More Properties 52 / 127

Generating Functions for Graph Counting I

Definition: A generating function is a formal power series that encodes
combinatorial structures:

G (x) =
∞∑
n=0

anx
n

where an represents the number of structures of size n.
Application in Graph Theory:

Counting the number of simple graphs, trees, or subgraphs using
coefficient extraction.

Example: Counting labeled graphs with n vertices:

G (x) =
∞∑
n=0

2(
n
2)

n!
xn

SDB Graph Theory - Comprehensive Topics Appendix More Properties 53 / 127

Generating Functions for Graph Counting II

Example: Counting Paths Using Generating Functions

Let A be the adjacency matrix of a graph.

The number of paths of length k between vertices i and j is given by:

Ak(i , j) = coefficient of xk in (I − xA)−1.

Exercise:

Find the number of walks of length 3 in a given graph using matrix
exponentiation.

Compute the coefficient of x3 in the expansion of (1− 3x)−1.

SDB Graph Theory - Comprehensive Topics Appendix More Properties 54 / 127

Probabilistic Counting in Graph Theory I
Why Use Probability in Counting?

Many graphs are too large to count explicitly.

Probabilistic methods provide approximate counts with high
accuracy.

Used in random graph theory, network models, and large-scale
data analysis.

Example: Counting Large Graphs Using the Erdős–Rényi Model

A random graph G (n, p) is constructed by including each edge
independently with probability p.

Expected number of edges:

E [|E |] = p

(
n

2

)
.

Expected number of spanning trees can be estimated using Markov’s
inequality.

SDB Graph Theory - Comprehensive Topics Appendix More Properties 55 / 127

Probabilistic Counting in Graph Theory II

Monte Carlo Estimation for Counting Subgraphs

Instead of explicit enumeration, use random sampling.

Example: Estimate the number of triangles in a graph by sampling
vertex triples.

Exercise:

Compute the expected number of Hamiltonian cycles in a random
graph G (n, 1/2).

Design a Monte Carlo algorithm to estimate the number of 4-cycles in
a large graph.

SDB Graph Theory - Comprehensive Topics Appendix More Properties 56 / 127

Real-World Applications of Counting and Bijections I

Where Do Counting and Bijections Matter?

Network Topology Analysis: Counting the number of possible
network configurations.

Molecular Chemistry: Counting chemical isomers using graph
enumeration.

Statistical Physics: Modeling states in quantum and lattice systems.

Social Networks: Counting possible connections in dynamic
networks.

Example: Chemical Compound Enumeration

Many molecules can be represented as graph structures.

Counting distinct chemical structures is equivalent to counting
non-isomorphic graphs.

SDB Graph Theory - Comprehensive Topics Appendix More Properties 57 / 127

Real-World Applications of Counting and Bijections II

Example: Counting Data Clustering Methods

The number of ways to partition a dataset of size n into k clusters is
given by Stirling numbers.

Exercise:

Compute the number of different spanning trees in a network of 6
nodes.

How many unique chemical structures exist for a given molecular
formula using graph enumeration?

SDB Graph Theory - Comprehensive Topics Appendix More Properties 58 / 127

Erdős-Stone Theorem
Statement: If H is a non-bipartite graph with chromatic number χ(H),
then the maximum number of edges in an H-free graph on n vertices is:

ex(n,H) =

(
1− 1

χ(H)− 1

)
n2

2
+ o(n2).

Significance:

Generalizes Turán’s Theorem for arbitrary forbidden subgraphs.

Asymptotically determines extremal numbers for all non-bipartite
graphs.

Proof Idea:

Extends the idea of Turán graphs to any graph H.

Uses probabilistic methods and the Regularity Lemma.

Shows that large graphs avoiding H must resemble Turán-type
structures.

Exercise:

Show that Erdős-Stone theorem reduces to Turán’s theorem when
H = Kr+1.

Explain why bipartite graphs do not follow Erdős-Stone bound.
SDB Graph Theory - Comprehensive Topics Appendix More Properties 59 / 127

Ramsey Theory – Finding Order in Chaos I

Statement (Ramsey’s Theorem): For any integers r , s, there exists a
number R(r , s) such that any edge-coloring of the complete graph Kn with
two colors contains:

A red clique of size r , or

A blue clique of size s.

Key Properties:

Ensures that large enough graphs must contain ordered substructures.

Fundamental to graph colorings, combinatorics, and logic.

Small Cases:

R(3, 3) = 6: Every 2-coloring of K6 has a monochromatic triangle.

Bounds on R(4, 4): Known to be between 18 and 25.

SDB Graph Theory - Comprehensive Topics Appendix More Properties 60 / 127

Ramsey Theory – Finding Order in Chaos II

Example: Ramsey Number R(3, 3) = 6

12

3

4 5

6

Exercise:

Prove that R(3, 3) = 6 using exhaustive cases.

Research bounds for R(5, 5).

SDB Graph Theory - Comprehensive Topics Appendix More Properties 61 / 127

Real-World Applications of Extremal Graph Theory I

Applications in Different Fields:

Communication Networks: Avoiding network congestion by
limiting cliques.

Computational Biology: Analyzing protein interaction networks.

Social Networks: Ensuring efficient influence spread while avoiding
redundant connections.

Data Storage & Compression: Encoding optimal error-correcting
codes.

Example: Avoiding Congestion in Wireless Networks

In wireless communication, avoiding large fully connected
subgraphs prevents interference.

Extremal graph theory helps in designing optimal network
structures.

SDB Graph Theory - Comprehensive Topics Appendix More Properties 62 / 127

Real-World Applications of Extremal Graph Theory II

Example: Ramsey Theory in Decision Problems

In scheduling, extremal problems help determine the minimum
resources needed to avoid conflicts.

Example: Finding a clique-free graph ensures no subset of jobs
requires the same resource.

Exercise:

How does extremal graph theory help in parallel computing?

What extremal properties are useful in designing secure
cryptographic networks?

SDB Graph Theory - Comprehensive Topics Appendix More Properties 63 / 127

Introduction to Probabilistic Methods in Extremal Graph
Theory I

Why Use Probability in Extremal Graph Theory?

Some extremal problems are too complex for constructive proofs.

The probabilistic method helps prove existence results without
explicitly constructing an object.

Often used to find lower bounds for extremal graph problems.

Key Idea:

Construct a random graph and show that it has the desired properties
with positive probability.

If such a graph exists with nonzero probability, then at least one such
graph must exist.

SDB Graph Theory - Comprehensive Topics Appendix More Properties 64 / 127

Introduction to Probabilistic Methods in Extremal Graph
Theory II

Examples of Use:

Lower bounds on Ramsey numbers.

Existence of graphs with large girth and high chromatic number.

Random constructions for sparse graphs with high
independence number.

Exercise:

Why is probability useful for proving existence rather than explicit
construction?

Research how randomness helps in designing efficient network
topologies.

SDB Graph Theory - Comprehensive Topics Appendix More Properties 65 / 127

Erdős’s Probabilistic Method I

Core Idea: Erdős introduced a non-constructive proof technique
where:

A randomly chosen structure is shown to have a desired property with
positive probability.

Since probability is positive, such a structure must exist.

Example: Lower Bounds on Ramsey Numbers

Consider a random graph G (n, 1/2) where each edge is included
independently with probability 1/2.

Expected number of monochromatic Kr cliques in a 2-coloring is:

E (X) ≤
(
n

r

)
21−(

r
2).

For large enough n, E (X) < 1, which means there exists at least one
coloring without a monochromatic Kr .

SDB Graph Theory - Comprehensive Topics Appendix More Properties 66 / 127

Erdős’s Probabilistic Method II

Why is This Important?

Provides lower bounds for Ramsey numbers where exact values are
unknown.

Introduces randomness in graph constructions, leading to optimal
network designs.

Exercise:

Show that R(4, 4) > 17 using Erdős’s method.

Research how random graphs help in machine learning and AI
applications.

SDB Graph Theory - Comprehensive Topics Appendix More Properties 67 / 127

Lower Bounds on Ramsey Numbers Using Probability I

Ramsey’s Theorem: Every edge-colored complete graph contains a
monochromatic clique of a certain size.
Using Probability to Bound Ramsey Numbers:

Erdős’s method provides an exponential lower bound on Ramsey
numbers:

R(r , r) ≥ 2r/2.

This shows that Ramsey numbers grow faster than polynomial
functions, proving why computing exact values is hard.

Proof Sketch:

Consider a random 2-coloring of Kn.

Compute the probability of a monochromatic Kr appearing.

Show that for large n, such an event occurs with low probability.

SDB Graph Theory - Comprehensive Topics Appendix More Properties 68 / 127

Lower Bounds on Ramsey Numbers Using Probability II

Applications:

Network robustness – ensuring redundancy while avoiding excessive
connections.

Parallel processing – scheduling large-scale computations to avoid
bottlenecks.

Exercise:

Prove that R(5, 5) > 43 using probability.

Research why exact Ramsey numbers are difficult to compute.

SDB Graph Theory - Comprehensive Topics Appendix More Properties 69 / 127

Probabilistic Constructions in Graph Theory I

Key Idea:

Instead of deterministic methods, construct graphs using randomized
rules.

Ensure the desired properties hold with high probability.

Example: Sparse Graphs with High Chromatic Number

Erdős showed that there exist graphs with large chromatic number
and arbitrarily large girth.

Construction:
▶ Start with an empty graph on n vertices.
▶ Add edges randomly while ensuring no small cycles appear.
▶ The resulting graph has a high chromatic number, proving its

existence.

SDB Graph Theory - Comprehensive Topics Appendix More Properties 70 / 127

Probabilistic Constructions in Graph Theory II

Application: Random Graphs in Network Design

Designing networks with minimum edge density while maximizing
robustness.

Using probabilistic models to simulate real-world social networks.

Exercise:

Construct a random graph with n = 10 vertices and find its chromatic
number.

Explain why sparse graphs can have arbitrarily large chromatic
numbers.

SDB Graph Theory - Comprehensive Topics Appendix More Properties 71 / 127

Real-World Applications of Probabilistic Methods
Why Use Random Graphs?

Many real-world networks are randomly evolving (e.g., internet
topology, social networks).

Randomized algorithms improve efficiency in large-scale
computations.

Applications:

Wireless Networks: Random graphs help model signal interference
in large-scale wireless networks.

Cryptography & Hashing: Probabilistic methods are used in
randomized hashing techniques for security.

Machine Learning & AI: Randomized graph models are used in
deep learning architectures.

Exercise:

Research how random graphs model brain neural networks.

Design a simple randomized load-balancing algorithm for networks.

SDB Graph Theory - Comprehensive Topics Appendix More Properties 72 / 127

Outline

8 Appendix
Matrices
DAG
More on Graph Types
More Properties
More Graph Terminologies
Shortest Paths
Handy Proofs and Results
More Problems to Explore

Independent Set, Vertex Cover, and Clique I

Independent Set:
▶ A set of vertices S ⊆ V in a graph G = (V ,E) is independent if no

two vertices in S are adjacent.
▶ Maximum Independent Set: The largest independent set in a graph.
▶ The Maximum Independent Set of a graph G is referred to as MIS(G).

The independence number (aka adjacency number) of G is defined as
α(G) = |MIS(G)|.

Vertex Cover:
▶ A set of vertices C ⊆ V such that every edge in the graph is incident

to at least one vertex in C .
▶ Minimum Vertex Cover : The smallest vertex cover in a graph.
▶ The Minimum Vertex Cover of a graph G is referred to as MVC (G).

The size of MVC (G) is denoted as β(G), i.e., β(G) = |MVC (G)|.
Clique:

▶ A set of vertices K ⊆ V that induces a complete subgraph.
▶ Maximum Clique: The largest clique in a graph.
▶ The size of the maximum clique of a graph G is denoted as ω(G).

SDB Graph Theory - Comprehensive Topics Appendix More Graph Terminologies 73 / 127

Independent Set, Vertex Cover, and Clique II

Properties:

Independent Set and Vertex Cover Relation:

S = V \ C ,

where S is an independent set and C is a vertex cover.

Independent Set and Clique Relation:

S is an independent set in G ⇐⇒ S is a clique in G .

Exercise:

Identify all independent sets, cliques, and vertex covers in the graph
above.

Prove that finding a maximum independent set is NP-complete.

SDB Graph Theory - Comprehensive Topics Appendix More Graph Terminologies 74 / 127

Example and Visualization - Independent Set
Definition Recap: An independent set is a set of vertices in which
no two vertices are adjacent.

Consider the graph G below:

A

B

C

D

Independent Set: S = {B,D} (highlighted in blue) is an
independent set because no edges exist between B and D.

Exercise:

Identify all independent sets in the graph.

Prove that no independent set in the graph has more than 2 vertices.

SDB Graph Theory - Comprehensive Topics Appendix More Graph Terminologies 75 / 127

Example and Visualization - Vertex Cover
Definition Recap: A vertex cover is a set of vertices such that
every edge in the graph is incident to at least one vertex in the set.

Consider the graph G below:

A

B

C

D

Vertex Cover: C = {A,C ,D} (highlighted in green) is a vertex
cover because all edges are incident to at least one vertex in C.

Exercise:

Find the minimum vertex cover for the graph.

Prove that the size of a vertex cover plus the size of a maximum
independent set equals the total number of vertices.
SDB Graph Theory - Comprehensive Topics Appendix More Graph Terminologies 76 / 127

Example and Visualization - Clique
Definition Recap: A clique is a subset of vertices that forms a
complete subgraph.

Consider the graph G below:

A

B

C

D

Clique: K = {B,C ,D} (highlighted in red) is a clique because all
pairs of vertices are connected.

Exercise:

Identify all cliques in the graph and find the maximum clique.

Prove that the size of a maximum clique in a graph is equal to the
chromatic number of its complement graph.
SDB Graph Theory - Comprehensive Topics Appendix More Graph Terminologies 77 / 127

Applications of Independent Set, Vertex Cover, and Clique

Independent Set Applications:
▶ Wireless Networks: Non-interfering stations in a frequency allocation

graph.
▶ Scheduling: Selecting non-conflicting tasks in a dependency graph.

Vertex Cover Applications:
▶ Network Monitoring: Ensuring every link in a network is monitored.
▶ Power Distribution: Selecting substations to cover all transmission

lines.

Clique Applications:
▶ Social Networks: Detecting tightly connected groups of individuals.
▶ Bioinformatics: Identifying highly interacting protein complexes.

Exercise:

Solve the vertex cover problem for a bipartite graph using the
Hopcroft-Karp algorithm.

Prove that a maximum independent set in a tree can be found in
polynomial time.

SDB Graph Theory - Comprehensive Topics Appendix More Graph Terminologies 78 / 127

Maximal vs. Maximum & Minimal vs. Minimum I

Key Concepts:

Maximum/Minimum: These are the absolute, global extremes in a
set.

▶ Example: A maximum independent set is an independent set of the
largest possible size in the graph.

▶ Example: A minimum spanning tree is the spanning tree with the
least total weight.

Maximal/Minimal: These are local extremes, meaning they cannot
be extended (or reduced) further while preserving the property,
though they may not be the best overall.

▶ Example: A maximal independent set is an independent set that
cannot have any additional vertex added to it without losing its
independence, but it might not have the largest possible number of
vertices.

▶ Example: A minimal vertex cover is a vertex cover such that
removing any vertex from it would cause it to cease being a vertex
cover, yet it might not be the smallest possible vertex cover.

SDB Graph Theory - Comprehensive Topics Appendix More Graph Terminologies 79 / 127

Maximal vs. Maximum & Minimal vs. Minimum II

Visual Illustration:

A

B

C

D

E

Independent Sets:

Maximal Independent Set: For
instance, {A,C} is an independent set
that cannot be extended (if adding any
other vertex violates independence).

Maximum Independent Set: The
largest independent set in this graph is
{A,D,E} .

Note: In this particular drawing, you would need to verify edge incidences;
the idea is to illustrate that every maximum independent set is maximal,
but a maximal one (like {A,C}) might be smaller than the absolute
maximum.

SDB Graph Theory - Comprehensive Topics Appendix More Graph Terminologies 80 / 127

Maximal vs. Maximum & Minimal vs. Minimum III

Key Observations:

Every maximum (or minimum) solution is also maximal (or minimal),
but not vice versa.

In optimization problems, ”optimal” solutions are those that achieve
the global best, while ”maximal” or ”minimal” can refer to local,
irreducible configurations.

Exercise:

Given a cycle graph C6, list all maximal independent sets and
determine which is maximum.

In a bipartite graph, distinguish between a maximal matching and a
maximum matching.

SDB Graph Theory - Comprehensive Topics Appendix More Graph Terminologies 81 / 127

Outline

8 Appendix
Matrices
DAG
More on Graph Types
More Properties
More Graph Terminologies
Shortest Paths
Handy Proofs and Results
More Problems to Explore

Dijkstra’s Algorithm I

Purpose: Computes the shortest path from a single source vertex to
all other vertices in a weighted graph.

Input: A graph G = (V ,E) with non-negative edge weights and
source vertex s.

Output: An array of shortest path distances d [v] for all v ∈ V .

Algorithm:
1 Initialize d [s] = 0, and d [v] = ∞ for all other vertices.
2 Set all vertices as unvisited. Use a priority queue for efficient edge

relaxation.
3 While there are unvisited vertices:

⋆ Extract the vertex u with the smallest d [u].
⋆ For each neighbor v of u, update:

d [v] = min(d [v], d [u] + weight(u, v)).

SDB Graph Theory - Comprehensive Topics Appendix Shortest Paths 82 / 127

Dijkstra’s Algorithm II

Graph:

A

B

C

D

1 2

4 1

Distances from A:

d [A] = 0, d [B] = 1, d [C] = 3, d [D] = 4.

Exercise:

Implement Dijkstra’s Algorithm for a weighted graph with 5 vertices.

Explain why Dijkstra’s Algorithm fails with negative edge weights.

SDB Graph Theory - Comprehensive Topics Appendix Shortest Paths 83 / 127

Bellman-Ford Algorithm I

Purpose: Computes shortest paths from a single source vertex to all
others, handling negative edge weights.

Input: A graph G = (V ,E) with edge weights (may include negative
weights) and source vertex s.

Output: An array of shortest path distances d [v] for all v ∈ V .
Detects negative weight cycles.

Algorithm:
1 Initialize d [s] = 0, and d [v] = ∞ for all other vertices.
2 Repeat |V | − 1 times:

⋆ For each edge (u, v) ∈ E , update:

d [v] = min(d [v], d [u] + weight(u, v)).

3 Check for negative cycles: For each edge (u, v) ∈ E , if
d [v] > d [u] + weight(u, v), report a negative weight cycle.

SDB Graph Theory - Comprehensive Topics Appendix Shortest Paths 84 / 127

Bellman-Ford Algorithm II

Graph:

A

B

C

D

4 -2

5 2

Distances from A:

d [A] = 0, d [B] = 4, d [C] = 2, d [D] = 4.

Exercise:

Use Bellman-Ford to compute shortest paths in a graph with 5
vertices and negative weights.

Prove that Bellman-Ford detects negative weight cycles in
O(|V | · |E |) time.

SDB Graph Theory - Comprehensive Topics Appendix Shortest Paths 85 / 127

Floyd-Warshall Algorithm I

Purpose: Computes the shortest paths between all pairs of vertices
in a weighted graph.

Input: A graph G = (V ,E) with adjacency matrix A, where:

A[i][j] =


Weight of edge (i , j), if (i , j) ∈ E ;

∞, if i ̸= j and (i , j) /∈ E ;

0, if i = j .

Output: Matrix D, where D[i][j] is the shortest path distance from i
to j .

Algorithm:
1 Initialize D(0) = A.
2 For each vertex k ∈ V , update:

D(k)[i][j] = min
(
D(k−1)[i][j],D(k−1)[i][k] + D(k−1)[k][j]

)
.

3 Repeat for k = 1, 2, . . . , n.

SDB Graph Theory - Comprehensive Topics Appendix Shortest Paths 86 / 127

Floyd-Warshall Algorithm II

Graph:

A

B

C

D

3 1

42

Adjacency Matrix:

A =


0 3 ∞ ∞
∞ 0 1 ∞
∞ ∞ 0 4
2 ∞ ∞ 0


After applying Floyd-Warshall:

D =


0 3 4 8
6 0 1 5
6 9 0 4
2 5 6 0


Exercise:

Apply Floyd-Warshall to a triangle graph with weights {1, 5, 3}.
Prove that Floyd-Warshall correctly handles negative edge weights
(but no negative cycles).

SDB Graph Theory - Comprehensive Topics Appendix Shortest Paths 87 / 127

Chinese Postman Problem I

Definition: The Chinese Postman Problem (CPP) seeks the shortest
closed path that visits every edge at least once in an undirected graph.
Applications:

Mail delivery and garbage collection.

Road network optimization.

Logistics and transportation planning.

Algorithm:

1 Identify vertices with odd degree.

2 Pair these vertices optimally using shortest paths.

3 Add the necessary edges to make all degrees even.

4 Find an Eulerian circuit in the modified graph.

SDB Graph Theory - Comprehensive Topics Appendix Shortest Paths 88 / 127

Chinese Postman Problem II

Graph Before Modification:

A

B

C

D

After Adding Necessary Edges:

A

B

C

D

Exercise:

Solve the Chinese Postman Problem for C6.

Find a real-world example where the CPP is useful.

SDB Graph Theory - Comprehensive Topics Appendix Shortest Paths 89 / 127

Solving the Chinese Postman Problem I

Definition Recap: The Chinese Postman Problem (CPP) seeks the
shortest closed path covering all edges at least once.
Algorithm to Solve CPP:

1 Identify Odd-Degree Vertices: If all vertices have even degree, an
Eulerian circuit exists. Otherwise, find all odd-degree vertices (they
must be paired).

2 Pair Odd-Degree Vertices: Find the shortest paths between all
odd-degree vertices. Compute the optimal pairing to minimize added
path length.

3 Duplicate the Shortest Paths: Add edges to make all degrees even.

4 Find an Eulerian Circuit: Use Fleury’s algorithm or Hierholzer’s
algorithm.

SDB Graph Theory - Comprehensive Topics Appendix Shortest Paths 90 / 127

Solving the Chinese Postman Problem II
Original Graph:

A

B

C

D

After Adding Extra Edges:

A

B

C

D

Key Observations:

Odd-degree vertices: {A,C} and {B,D}.
Shortest paths added: (A,C) to make all degrees even.

Eulerian circuit now exists.

Exercise:

Solve the CPP for a small road network graph.

Find an Eulerian circuit after adding the required edges.

SDB Graph Theory - Comprehensive Topics Appendix Shortest Paths 91 / 127

Overview of Shortest Path Algorithms in Graphs I

Algorithm Best Suited For Time Complexity
Dijkstra’s Graphs with non-negative weights O((V + E) logV)
Bellman-Ford Graphs with negative weights (but no negative

cycles)
O(VE)

Floyd-Warshall Dense graphs, all-pairs shortest paths O(V 3)
Johnson’s Sparse graphs with negative weights (no cycles) O(V 2 logV + VE)
A* Search Graphs with heuristic-based pathfinding (e.g.,

maps)
O(E) (depends on
heuristic)

Bidirectional Dijk-
stra

Large graphs with few goal vertices O((V + E) logV)
(faster in practice)

Yen’s k-Shortest
Paths

Finding multiple shortest paths O(k(V + E) logV)

Thorup’s Planar graphs with positive weights O(V)
BFS (for Un-
weighted Graphs)

Unweighted graphs (unit weights) O(V + E)

Dial’s Graphs with integer weights in a small range O(V +C) (where C is
max edge weight)

Fringe Search AI pathfinding (optimized for real-time sys-
tems)

O(E) (depends on
heuristic)

ALT (A*, Land-
marks, Triangle)

Road networks (precomputed heuristics) O(E) (efficient in
practice)

Hirschberg and
Larmore’s

Special cases in dynamic programming O(VE)

SDB Graph Theory - Comprehensive Topics Appendix Shortest Paths 92 / 127

Overview of Shortest Path Algorithms in Graphs II

Brief Reasoning for Suitability:

Dijkstra’s Algorithm – Efficient for graphs with non-negative
weights due to priority queue optimization.

Bellman-Ford Algorithm – Works even with negative weights by
relaxing edges V − 1 times.

Floyd-Warshall Algorithm – Best for small, dense graphs since it
computes all-pairs shortest paths.

Johnson’s Algorithm – Handles negative weights efficiently by
re-weighting edges using Bellman-Ford.

A* Search Algorithm – Uses heuristics for directed graphs like road
maps, reducing unnecessary searches.

Bidirectional Dijkstra – Searches forward from the source and
backward from the target, improving efficiency.

Yen’s Algorithm – Used when multiple shortest paths are needed,
common in routing problems.

SDB Graph Theory - Comprehensive Topics Appendix Shortest Paths 93 / 127

Overview of Shortest Path Algorithms in Graphs III

Thorup’s Algorithm – Fastest known algorithm for planar graphs
with positive weights.

BFS (for Unweighted Graphs) – Finds shortest path in unit weight
graphs in linear time.

Dial’s Algorithm – Works well when weights are small integers
(bucket-based).

Fringe Search – Optimized version of A* for real-time AI and
robotics.

ALT Algorithm – Uses precomputed landmarks for fast route-finding
in road networks.

Hirschberg and Larmore’s Algorithm – Applied in dynamic
programming shortest path cases.

SDB Graph Theory - Comprehensive Topics Appendix Shortest Paths 94 / 127

Overview of Shortest Path Algorithms in Graphs IV

Exercise:

Compare Dijkstra’s and Bellman-Ford algorithms on a weighted
directed graph.

Implement Floyd-Warshall for a 6-vertex graph and verify the all-pairs
shortest paths.

Research which algorithm is used in Google Maps, GPS navigation, or
AI game pathfinding.

SDB Graph Theory - Comprehensive Topics Appendix Shortest Paths 95 / 127

Outline

8 Appendix
Matrices
DAG
More on Graph Types
More Properties
More Graph Terminologies
Shortest Paths
Handy Proofs and Results
More Problems to Explore

Complement of a Disconnected Graph is Connected

Statement: The complement of a simple disconnected graph must be
connected.
Proof Sketch:

Let G be a simple disconnected graph. Then, G has at least two
components.

For any two vertices u, v in G , there exists no edge uv in G if u and
v are in different components.

In G , u and v are adjacent because uv is not an edge in G .

Therefore, every pair of vertices from different components in G is
connected in G , making G connected.

SDB Graph Theory - Comprehensive Topics Appendix Handy Proofs and Results 96 / 127

Odd Edge Appearance Implies a Cycle

Statement: If edge e appears an odd number of times in a closed walk
W , then W contains the edges of a cycle through e.
Proof Sketch:

Let e = uv , and assume e appears 2k + 1 times in W .

Each traversal of e contributes to entering and exiting u and v .

Focus on the first traversal of e and trace the path u → v without
repeating e.

This subpath forms a cycle containing e since W is closed.

SDB Graph Theory - Comprehensive Topics Appendix Handy Proofs and Results 97 / 127

Two Distinct u, v -Paths Contain a Cycle

Statement: If P and Q are two distinct u, v -paths in G , then G contains
a cycle.
Proof Sketch:

Let P and Q be two distinct u, v -paths.

Combine P and Q to form a closed walk W .

The closed walk W must include a cycle, as it contains redundant
edges or vertices.

Extract the cycle by tracing the paths until they overlap.

SDB Graph Theory - Comprehensive Topics Appendix Handy Proofs and Results 98 / 127

Connectivity via One Vertex

Statement: A graph is connected if and only if some vertex is connected
to all other vertices.
Note: ’Connected’ does not necessarily mean ’adjacent’.
Proof Sketch:

(If direction) If v is connected to all other vertices, every pair of
vertices is connected via v .

(Only if direction) If G is connected, there exists a spanning tree with
v connected to all vertices.

Thus, G is connected if and only if some vertex connects to all others.

SDB Graph Theory - Comprehensive Topics Appendix Handy Proofs and Results 99 / 127

Partitioning a Closed Trail into Cycles

Statement: The edge set of every closed trail can be partitioned into
edge sets of cycles.
Proof Sketch:

Let T be a closed trail in G .

Identify the first repeated vertex v in T . Trace the subpath from v
back to itself, forming a cycle C .

Remove C from T , leaving a new closed trail.

Repeat the process until T is empty, producing a partition of T into
cycles.

SDB Graph Theory - Comprehensive Topics Appendix Handy Proofs and Results 100 / 127

Bipartite Graphs and Odd Cycles

Statement: Every graph G with no odd cycles is bipartite.
Proof Sketch:

Assume G has no odd cycles.

Assign vertices to two sets X and Y based on their distances
(even/odd) from a starting vertex.

Since there are no odd cycles, no edge connects vertices within the
same set.

Thus, G is bipartite.

SDB Graph Theory - Comprehensive Topics Appendix Handy Proofs and Results 101 / 127

Graph of Permutations is Connected

Statement: If Gn is the graph whose vertices are the permutations of [n]
and two permutations are adjacent if one results from switching two
elements, then Gn is connected.
Proof Sketch:

Any permutation can be transformed into another by a sequence of
adjacent transpositions (swapping neighboring elements).

Starting from any permutation, repeatedly swap adjacent elements to
reach the identity permutation.

Thus, any two permutations are connected via a series of
transpositions, proving Gn is connected.

SDB Graph Theory - Comprehensive Topics Appendix Handy Proofs and Results 102 / 127

Biclique Characterization

Statement: A connected simple graph not having P4 or C3 as an induced
subgraph is a biclique.
Proof Sketch:

Assume G is connected and does not have P4 or C3 as induced
subgraphs.

Absence of P4 implies that every pair of vertices has a common
neighbor.

Absence of C3 ensures no three vertices form a triangle.

These properties force G to be a complete bipartite graph (biclique).

SDB Graph Theory - Comprehensive Topics Appendix Handy Proofs and Results 103 / 127

Components of Gk

Statement: Show that the graph Gk whose vertices are the k-tuples of
bits has at most two components.
Proof Sketch:

Two k-tuples are adjacent if they differ in exactly one bit.

All k-tuples with an even number of 1s form one component, and all
k-tuples with an odd number of 1s form another component.

If k is odd, flipping a single bit changes the parity, connecting the
components.

Thus, Gk has at most two components.

SDB Graph Theory - Comprehensive Topics Appendix Handy Proofs and Results 104 / 127

Connectivity and Reachability

Statement: A graph G is connected if, for any vertex x , the set of
vertices reachable by paths from x is the set of all vertices.
Proof Sketch:

(If direction) If G is connected, every vertex can be reached from x
by definition.

(Only if direction) If all vertices are reachable from x , there exists a
path between any pair of vertices.

Therefore, G is connected if and only if all vertices are reachable from
any single vertex.

SDB Graph Theory - Comprehensive Topics Appendix Handy Proofs and Results 105 / 127

Path Between Odd-Degree Vertices

Statement: Let G be a graph with only two vertices of odd degree u and
v . Then there exists a u, v -path.
Proof Sketch:

By the Handshaking Lemma, the sum of degrees in G is even.

If u and v are the only odd-degree vertices, all other vertices have
even degree.

Starting from u, construct an Eulerian trail, which must end at v .

Thus, there exists a u, v -path.

SDB Graph Theory - Comprehensive Topics Appendix Handy Proofs and Results 106 / 127

Odd Edge Subgraph is Even

Statement: If C is a closed walk in a simple graph G , then the subgraph
consisting of the edges appearing an odd number of times in C is an even
graph.
Note: A graph where every single vertex has an even degree, is called
even graph.
Proof Sketch:

Let C be a closed walk in G .

Construct a subgraph H consisting of edges appearing an odd number
of times in C .

Each vertex in H has even degree since every entry into a vertex in C
is paired with an exit.

Thus, H is an even graph.

SDB Graph Theory - Comprehensive Topics Appendix Handy Proofs and Results 107 / 127

Degree List of a Graph

Statement: Every list of nonnegative integers with an even sum is the
degree list of some graph (not necessarily a simple graph).
Proof Sketch:

Let d1, d2, . . . , dn be a list of nonnegative integers with an even sum.

Use the Havel-Hakimi algorithm to iteratively construct a graph:
▶ Arrange the degrees in non-increasing order.
▶ Remove the largest degree d1 and reduce the next d1 degrees by 1.
▶ Repeat until all degrees are zero or invalid.

Since the sum of the degrees is even, the process succeeds, yielding a
graph.

SDB Graph Theory - Comprehensive Topics Appendix Handy Proofs and Results 108 / 127

Graphic n-Tuple Characterization

Statement: An n-tuple of nonnegative integers with largest entry k is
graphic if the sum is even, k < n, and every entry is k or k − 1.
Proof Sketch:

Let d1, d2, . . . , dn be the n-tuple.

(Sum Condition) The sum of degrees must be even to ensure edge
pairing.

(Largest Entry Condition) k < n ensures enough vertices for k edges.

(Value Range Condition) Entries k or k − 1 guarantee a realizable
graph structure.

Using these conditions, construct a graph using iterative degree
reduction (e.g., Havel-Hakimi).

SDB Graph Theory - Comprehensive Topics Appendix Handy Proofs and Results 109 / 127

Independent Set in Loopless Digraph

Statement: Every loopless digraph has an independent set S such that
every vertex not in S has a path of length at most 2 to S .
Proof Sketch:

Use a greedy algorithm to construct S :
▶ Start with S = ∅.
▶ Iteratively add a vertex v to S if v has no incoming edges from S .

Every vertex not in S is either adjacent to a vertex in S or has a
neighbor adjacent to S (path of length at most 2).

Thus, S satisfies the conditions.

SDB Graph Theory - Comprehensive Topics Appendix Handy Proofs and Results 110 / 127

Components After Removing an Edge

Statement: If e is an edge of G , then G − e has at most one more
component than G .
Proof Sketch:

Removing edge e can only disconnect vertices that were connected by
e.

If e is a cut-edge, G − e has one more component than G .

If e is not a cut-edge, G − e has the same number of components as
G .

Thus, G − e has at most one more component than G .

SDB Graph Theory - Comprehensive Topics Appendix Handy Proofs and Results 111 / 127

Sum of Degrees Equals Twice the Edges

Statement: The number of edges in a graph is the sum of the degrees
divided by 2.
Proof Sketch:

Each edge contributes 1 to the degree of each of its endpoints.

Summing over all vertices counts each edge twice.

Let d1, d2, . . . , dn be the degrees of the vertices.

Total degree sum is
∑n

i=1 di = 2e(G).

Dividing by 2 gives e(G) = 1
2

∑n
i=1 di .

SDB Graph Theory - Comprehensive Topics Appendix Handy Proofs and Results 112 / 127

Odd-Degree Vertices

Statement: The number of vertices of odd degree in a graph is even.
Proof Sketch:

Total degree sum
∑n

i=1 di is even since it equals 2e(G).

Odd-degree vertices contribute an odd sum to
∑n

i=1 di .

To ensure the total sum is even, the number of odd-degree vertices
must be even.

SDB Graph Theory - Comprehensive Topics Appendix Handy Proofs and Results 113 / 127

Edge Bound in a Simple Graph

Statement: If a simple graph G has n vertices and k components, then
e(G) ≤ (n−k)(n−k+1)

2 .
Proof Sketch:

Each component of G has at most vi (vi−1)
2 edges, where vi is the

number of vertices in the i-th component.

The function x(x−1)
2 is maximized when x is as large as possible.

Distribute vertices evenly among components to maximize edges.

Total edge count is bounded by (n−k)(n−k+1)
2 .

SDB Graph Theory - Comprehensive Topics Appendix Handy Proofs and Results 114 / 127

Components in G + H

Statement: If G has k components and H has l components, then G +H
has k + l components.
Proof Sketch:

The union G + H does not add edges between G and H.

Components of G and H remain separate.

Thus, the number of components in G + H is k + l .

SDB Graph Theory - Comprehensive Topics Appendix Handy Proofs and Results 115 / 127

Maximum Degree in G + H

Statement: The maximum degree of G + H is max{∆(G),∆(H)}.
Proof Sketch:

G + H overlays the edges of G and H on the same vertex set.

A vertex’s degree in G + H is the sum of its degrees in G and H.

The maximum degree is therefore max{∆(G),∆(H)}.

SDB Graph Theory - Comprehensive Topics Appendix Handy Proofs and Results 116 / 127

Pn is Bipartite

Statement: Pn, the path graph, is bipartite.
Proof Sketch:

Partition vertices of Pn into two sets based on parity of their distance
from an endpoint.

No two vertices in the same set are adjacent.

Thus, Pn is bipartite.

SDB Graph Theory - Comprehensive Topics Appendix Handy Proofs and Results 117 / 127

Largest Bipartite Subgraph of Cn

Statement: The largest bipartite subgraph of Cn has n edges if n is even,
and n − 1 edges if n is odd.
Proof Sketch:

A cycle Cn is bipartite if and only if n is even.

For even n, the entire Cn is bipartite with n edges.

For odd n, remove one edge to make the graph acyclic and bipartite.

This results in a subgraph with n − 1 edges.

SDB Graph Theory - Comprehensive Topics Appendix Handy Proofs and Results 118 / 127

Largest Bipartite Subgraph of Kn

Statement: The largest bipartite subgraph of Kn has ⌊n2/4⌋ edges.
Proof Sketch:

Divide n vertices into two sets of sizes ⌊n/2⌋ and ⌈n/2⌉.
Connect every vertex in one set to all vertices in the other set.

Edge count is ⌊n2/4⌋.

SDB Graph Theory - Comprehensive Topics Appendix Handy Proofs and Results 119 / 127

Outline

8 Appendix
Matrices
DAG
More on Graph Types
More Properties
More Graph Terminologies
Shortest Paths
Handy Proofs and Results
More Problems to Explore

Extremal Problems in Graph Theory

Classic Extremal Graph Theory Problems

Turán’s Theorem - Maximum edges in a graph avoiding Kr .

Erdős-Stone Theorem - Asymptotic version of Turán’s theorem.

Mantel’s Theorem - Maximum edges in a triangle-free graph.

Zarankiewicz Problem - Maximum edges in a bipartite graph
avoiding Ks,t .

Kővári-Sós-Turán Theorem - Bipartite analogue of Turán’s
theorem.

Ramsey-Type Problems

Ramsey’s Theorem - Existence of monochromatic subgraphs in
edge-colored graphs.

Erdős-Rado Sunflower Theorem - Combinatorial extremal result
related to Ramsey theory.

SDB Graph Theory - Comprehensive Topics Appendix More Problems to Explore 120 / 127

More Extremal Graph Problems
Cycle & Path Extremal Problems

Erdős-Gallai Theorem - Minimum edge count for containing a long
path or cycle.

Dirac’s Theorem - Sufficient degree condition for a Hamiltonian
cycle.

Bondy-Chvátal Theorem - Closure concept for Hamiltonian graphs.

Ore’s Theorem - Hamiltonicity based on degree sum conditions.

Matching & Covering Extremal Theorems

Hall’s Marriage Theorem - Condition for perfect matchings in
bipartite graphs.

König’s Theorem - Relation between maximum matching and
minimum vertex cover in bipartite graphs.

Gallai-Edmonds Decomposition - Structure of matchings in general
graphs.

Tutte’s Theorem - Condition for a perfect matching in general
graphs.

SDB Graph Theory - Comprehensive Topics Appendix More Problems to Explore 121 / 127

Advanced Graph Problems

Connectivity & Expansion Theorems

Menger’s Theorem - Maximum number of independent paths
between two vertices.

Whitney’s Theorem - Characterization of 2-connected graphs.

Cheeger’s Inequality - Connection between expansion and
eigenvalues of adjacency matrix.

Graph Coloring & Partition Theorems

Brook’s Theorem - Upper bound on chromatic number.

Hajnal-Szemerédi Theorem - Equitable colorings of graphs.

Erdős-Ko-Rado Theorem - Bounds on intersecting families of sets
related to graphs.

Mycielski’s Theorem - Constructing triangle-free graphs with high
chromatic number.

SDB Graph Theory - Comprehensive Topics Appendix More Problems to Explore 122 / 127

Problems Proven Impossible Using Graphs I

Certain problems that appear plausible at first glance can be shown to be
impossible using graph theory:

1 Koenigsberg Bridges Problem:
▶ Traversing all seven bridges exactly once is impossible due to

odd-degree vertices.

2 Three Utilities Problem:
▶ Connecting three houses to three utilities without crossing lines is

impossible because K3,3 is non-planar.

3 Four Color Problem:
▶ Proves that no map can be colored with fewer than four colors without

adjacent regions sharing the same color.

4 Domino Tiling Problem:
▶ A 2× n chessboard with opposite corners removed cannot be tiled due

to color imbalances.

SDB Graph Theory - Comprehensive Topics Appendix More Problems to Explore 123 / 127

Problems Proven Impossible Using Graphs II

5 Handshake Problem:
▶ If the number of people is odd, it’s impossible for everyone to pair up

for handshakes.

6 Traveling Salesman Problem (TSP):
▶ Finding the shortest path visiting all vertices is computationally

infeasible for large graphs (NP-hard).

Question to Ponder: How does graph theory help simplify and formalize
seemingly complex problems?

SDB Graph Theory - Comprehensive Topics Appendix More Problems to Explore 124 / 127

Famous Open Problems in Graph Theory I

1. Hamiltonian Cycle Problem (HCP)

NP-complete for general graphs.

Special cases like Tait’s Conjecture remain unresolved.

2. Longest Path Problem

NP-hard: Finding the longest simple path in a graph is
computationally difficult.

No known efficient algorithm for general graphs.

3. Gallai’s Path Decomposition Conjecture

Every connected graph can be decomposed into at most ⌈n/2⌉ paths.

Proven for some special graph classes, but remains open in general.

4. Lovász’ Hamiltonicity Conjecture

Are all connected vertex-transitive graphs Hamiltonian?

Still open for Cayley graphs and some families of graphs.

SDB Graph Theory - Comprehensive Topics Appendix More Problems to Explore 125 / 127

Famous Open Problems in Graph Theory II

5. Erdős–Gyárfás Conjecture

Every triangle-free graph of minimum degree d has a cycle of length
≤ 2d .

Partially solved but remains open for general graphs.

6. Chvátal’s Toughness Conjecture

Is there a constant t such that every t-tough graph is Hamiltonian?

Open for general graphs.

7. Barnette’s Conjecture

Every 3-connected cubic bipartite planar graph is Hamiltonian.

Open, but proven for some small cases.

8. Graceful Tree Conjecture

Every tree can be labeled gracefully (distinct edge differences).

Still an unsolved problem in combinatorial graph theory.

SDB Graph Theory - Comprehensive Topics Appendix More Problems to Explore 126 / 127

Famous Open Problems in Graph Theory III

9. Erdős-Pósa Property for Paths

If a graph has many disjoint paths, does it always contain a
bounded-size hitting set?

Known for cycles, but open for general paths.

10. Alon-Saks-Seymour Conjecture

The chromatic number of a graph is at most logarithmic in the
number of edge-disjoint paths.

Open in the general case.

SDB Graph Theory - Comprehensive Topics Appendix More Problems to Explore 127 / 127

	Introduction
	Types of Graphs
	Common Terminologies in Graph
	Subgraphs and Decompositions
	Directed Graphs
	Weighted Graphs
	Special Graphs and Problems
	Summary
	Appendix
	Appendix
	Matrices
	DAG
	More on Graph Types
	More Properties
	More Graph Terminologies
	Shortest Paths
	Handy Proofs and Results
	More Problems to Explore

