
4 Graph Matching
This module covers graph matching concepts, including maximum matching, bipartite matching,
and key theorems. The exercises below will help you understand and implement these concepts in
Python.

4.1 Exercise 1: Maximum Matching in General Graphs
Task: Implement the Edmonds’ Blossom Algorithm to find maximum matching in general graphs.

Hint: Use augmenting paths and shrinking blossoms.

4.2 Exercise 2: Maximum Bipartite Matching (Hopcroft-Karp Algo-
rithm)

Task: Implement the Hopcroft-Karp algorithm to find the maximum matching in a bipartite graph.

1 from collections import deque
2

3 def bfs(graph , pair_u , pair_v , dist):
4 queue = deque()
5 for u in graph:
6 if pair_u[u] == 0:
7 dist[u] = 0
8 queue.append(u)
9 else:

10 dist[u] = float('inf')
11 dist[0] = float('inf')
12 while queue:
13 u = queue.popleft()
14 if dist[u] < dist[0]:
15 for v in graph[u]:
16 if dist[pair_v[v]] == float('inf'):
17 dist[pair_v[v]] = dist[u] + 1
18 queue.append(pair_v[v])
19 return dist[0] != float('inf')

4.3 Exercise 3: Hall’s Theorem Verification
Task: Implement a function to check if a bipartite graph satisfies Hall’s marriage condition.

4.4 Exercise 4: Stable Matching (Gale-Shapley Algorithm)
Task: Implement the Gale-Shapley algorithm for stable matching.

4.5 Exercise 5: Weighted Matching (Hungarian Algorithm)
Task: Implement the Hungarian Algorithm for finding the maximum weight matching in a weighted
bipartite graph.

8



4.6 Bonus Challenge 1: Random Matching Generation
Task: Generate a random graph and find its maximum matching.

4.7 Bonus Challenge 2: Matching for Job Assignment
Task: Model a job assignment problem as a matching problem and solve it using the Hungarian
Algorithm.

9


