
1 Fundamental Concepts of Graph Theory
This module covers the basic concepts of graphs, including representations, connectivity, shortest
paths, and basic graph properties. The exercises below are designed to help you understand and
implement these concepts in Python.

1.1 Exercise 1: Graph Representation
Task: Implement both adjacency matrix and adjacency list representations of a graph.

Hint: Use a dictionary for adjacency lists and a 2D list for adjacency matrices.

1 # Adjacency List Representation
2 class Graph:
3 def __init__(self):
4 self.graph = {}
5

6 def add_edge(self, u, v):
7 if u not in self.graph:
8 self.graph[u] = []
9 self.graph[u].append(v)

10

11 G = Graph()
12 G.add_edge(1, 2)
13 G.add_edge(2, 3)
14 print(G.graph)

1.2 Exercise 2: Graph Matrices
Task: Implement functions to compute adjacency, incidence, and path matrices for a given graph.

Hint: Use NumPy for efficient matrix operations.

1 import numpy as np
2

3 def adjacency_matrix(graph , n):
4 matrix = np.zeros((n, n))
5 for u in graph:
6 for v in graph[u]:
7 matrix[u-1][v-1] = 1
8 return matrix

1.3 Exercise 3: Koenigsberg Bridges Problem
Task: Model the Koenigsberg Bridges problem as a graph and determine if an Eulerian path exists.

Hint: Check vertex degrees to determine Eulerian properties.

1.4 Exercise 4: Graph Isomorphism Check
Task: Implement an algorithm to check if two graphs are isomorphic.

1



Hint: Convert graphs into canonical representations and compare them.
Challenge: Implement an efficient version that works on large graphs.

1.5 Exercise 5: Degree and Connectivity Tests
Task: Write functions to compute degree sequences and test graph connectivity.

1 def degree_sequence(graph):
2 return sorted([len(graph[node]) for node in graph], reverse=True)
3

4 def is_connected(G):
5 import networkx as nx
6 return nx.is_connected(G)

1.6 Exercise 6: Shortest Path Algorithms
Task: Implement Dijkstra’s and Floyd-Warshall shortest path algorithms.

1 import heapq
2

3 def dijkstra(graph , start):
4 pq = [(0, start)]
5 distances = {node: float('inf') for node in graph}
6 distances[start] = 0
7

8 while pq:
9 (dist, node) = heapq.heappop(pq)

10 for neighbor , weight in graph[node]:
11 new_dist = dist + weight
12 if new_dist < distances[neighbor]:
13 distances[neighbor] = new_dist
14 heapq.heappush(pq, (new_dist , neighbor))
15

16 return distances

1.7 Exercise 7: Eulerian and Hamiltonian Paths
Task: Implement algorithms to check if a graph has an Eulerian or Hamiltonian path.

1.8 Exercise 8: Graph Theorems Computational Tests
Task: Write Python programs to test the following theorems: - Handshaking Lemma: Sum of
degrees = 2 × edges. - If all nodes have even degrees, the graph has an Eulerian cycle. - Euler’s
Formula: V − E + F = 2 for planar graphs.

1.9 Exercise 9: Graph Decomposition
Task: Implement algorithms to decompose a graph into subgraphs.

Hint: Use connected components and biconnected component algorithms.

2



1.10 Bonus Challenge 1: Graph Reconstruction Conjecture
Task: Given all vertex-deleted subgraphs of a graph, reconstruct the original graph.

1.11 Bonus Challenge 2: Planarity Testing
Task: Implement an algorithm to test whether a graph is planar using Kuratowski’s theorem.

1.12 Bonus Challenge 3: Random Graph Generation and Analysis
Task: Generate random graphs and analyze their properties (degree distribution, connected com-
ponents, average shortest path length).

Hint: Use NetworkX’s random graph generators.

3


