
6 Graph Connectivity
This module covers connectivity concepts, including vertex and edge connectivity, cut vertices,
bridges, and network flow. The exercises will help you implement these concepts in Python.

6.1 Exercise 1: Connected Components in an Undirected Graph
Task: Implement a function to find all connected components of an undirected graph.

Hint: Use BFS or DFS to traverse the graph.

1 def find_connected_components(graph):
2 visited = set()
3 components = []
4

5 def dfs(node, component):
6 visited.add(node)
7 component.append(node)
8 for neighbor in graph[node]:
9 if neighbor not in visited:

10 dfs(neighbor , component)
11

12 for node in graph:
13 if node not in visited:
14 component = []
15 dfs(node, component)
16 components.append(component)
17

18 return components

6.2 Exercise 2: Vertex and Edge Connectivity
Task: Implement functions to compute the vertex and edge connectivity of a graph.

Hint: Use min-cut properties to determine connectivity.

6.3 Exercise 3: Cut Vertices (Articulation Points)
Task: Implement an algorithm to find all articulation points in a graph.

Hint: Use DFS with low-link values.

6.4 Exercise 4: Bridges (Cut Edges)
Task: Implement an algorithm to find all bridges in a graph.

6.5 Exercise 5: Network Flow (Max-Flow Min-Cut Theorem)
Task: Implement the Ford-Fulkerson algorithm to compute maximum flow in a flow network.

11



6.6 Exercise 6: Strong Connectivity in Directed Graphs
Task: Implement Kosaraju’s or Tarjan’s algorithm to find strongly connected components (SCCs).

6.7 Bonus Challenge 1: Random Graph Connectivity Testing
Task: Generate random graphs and compute their connectivity properties.

6.8 Bonus Challenge 2: Critical Edge and Vertex Removal
Task: Given a graph, identify the most critical edge or vertex whose removal minimizes connectivity.

12


