
3 Graph Coloring
This module covers vertex coloring, edge coloring, chromatic numbers, matching, and key theorems.
The exercises will help you implement these concepts in Python.

3.1 Exercise 1: Vertex Coloring with Greedy Algorithm
Task: Implement the greedy coloring algorithm.

Hint: Order vertices arbitrarily and assign the smallest available color.

1 def greedy_coloring(graph):
2 color = {}
3 for node in graph:
4 used_colors = {color[neighbor] for neighbor in graph[node] if neighbor

in color}
5 color[node] = next(c for c in range(len(graph)) if c not in used_colors

)
6 return color

3.2 Exercise 2: Chromatic Number Calculation
Task: Implement a function to compute the chromatic number of a graph.

Hint: Try different vertex orderings and compare results.

3.3 Exercise 3: Edge Coloring (Vizing’s Theorem)
Task: Implement an algorithm for edge coloring using at most ∆+ 1 colors.

3.4 Exercise 4: Bipartite Graph Coloring
Task: Write a function to check if a graph is bipartite and 2-colorable.

Hint: Use BFS to assign alternating colors.

3.5 Exercise 5: Brook’s Theorem Implementation
Task: Verify that any graph (except complete graphs and odd cycles) satisfies χ(G) ≤ ∆(G).

3.6 Exercise 6: Matching in Bipartite Graphs (Hall’s Theorem)
Task: Implement Hopcroft-Karp algorithm to find maximum matching.

3.7 Bonus Challenge 1: Graph Coloring for Scheduling
Task: Model an exam scheduling problem as a graph coloring problem and solve it.

6



3.8 Bonus Challenge 2: Mycielski’s Construction
Task: Implement Mycielski’s theorem to construct triangle-free graphs with higher chromatic num-
bers.

7


