
Assignment no. 5

Title: Applications of Linear Lists, Stacks and Queue

All four problems are mandatory for this assignment.

• Part 1 : Nested linked lists

1. Objective: The objective of this lab assignment is to implement a library catalog management system

using nested linked lists in the C programming language.

2. Define the Book Structure: Define a structure named "Book" with the following members:

a. "title" (string) to store the title of the book.

b. "author" (string) to store the name of the author.

c. "publicationYear" (integer) to store the year of publication.

3. Define the Genre Structure: Define a structure named "Genre" with the following members:

a. "genreName" (string) to store the name of the genre.

b. "books" (linked list) to store the list of books belonging to the genre.

4. Implement the Nested Linked List:

a. Create a linked list data structure for "Book" structure to represent the list of books under each

genre.

b. Each node of the "Book" linked list should contain a "Book" structure and a pointer to the next

node.

c. Create a linked list data structure for "Genre" structure to represent the list of genres in library

catalog.

d. Each node of the "Genre" linked list should contain a "Genre" structure and a pointer to the next

genre.

5. Basic Operations: Implement functions for the following basic linked list operations for the "Book" linked

list:

a. "createBookNode" - creates a new book node and returns its address.

b. "insertBookAtFront" - inserts a new book at the front of the book linked list under a specific

genre.

c. "deleteBookFromFront" - deletes the first book from the book linked list under a specific genre.

d. "displayBooks" - prints the details of all books under a specific genre.

6. Implement functions for the following basic linked list operations for the "Genre" linked list:

a. "createGenreNode" - creates a new genre node and returns its address.

b. "insertGenreAtFront" - inserts a new genre at the front of the genre linked list.

c. "deleteGenreFromFront" - deletes the first genre from the genre linked list.

d. "displayGenres" - prints the names of all genres in the library catalog.

7. Library Catalog Management System:

a. Provide a user interface for the library catalog management system, allowing users to:

• Add new genres to the library catalog.

• Add new books under a specific genre.

• Delete a genre from the library catalog (and all books under it).

• Delete a book from a specific genre.

• Display all genres and books in the library catalog.

b. Search and Update: Implement functions for the following additional operations:

• "searchBookByTitle" - searches for a book by title and returns its details (genre, author,

publication year).

• "updateBookDetails" - allows the user to update the details (author, publication year) of a

book by its title.

8. Testing and Demonstration:

a. Test your library catalog management system by adding, deleting, and updating genres and

books.

b. Demonstrate the functionality of the nested linked list by displaying all genres and books in the

library catalog.

• Part 2 : Polynomial using linked lists

1. Define the Polynomial Structure:

a. Define a structure named "Term" with the following members:

• "coeff" (integer) to store the coefficient of the term.

• "exp" (integer) to store the exponent of the term.

• "next" (pointer to the next Term) to create the linked list.

2. Polynomial Creation:

a. Implement a function named "createTerm" to create a new Term node and return its address.

b. Implement a function named "insertTerm" to insert a new term (with given coefficient and

exponent) into the polynomial linked list.

c. Prompt the user to input the number of terms in the polynomial and their coefficients and

exponents. Create the linked list accordingly.

3. Polynomial Display: Implement a function named "displayPolynomial" to display the polynomial

expression in a readable format (e.g., 3x^2 + 2x + 5).

4. Polynomial Addition:

a. Implement a function named "addPolynomials" to add two polynomial linked lists and store the

result in a new linked list.

b. Display the original polynomials and the result polynomial.

5. Polynomial Multiplication:

a. Implement a function named "multiplyPolynomials" to multiply two polynomial linked lists and

store the result in a new linked list.

b. Display the original polynomials and the result of polynomial multiplication.

6. Polynomial Evaluation:

a. Implement a function named "evaluatePolynomial" to evaluate the polynomial for a given value

of x.

b. Prompt the user to input the value of x, and then calculate and display the result of polynomial

evaluation.

7. Testing and Demonstration:

a. Test each operation (creation, addition, evaluation, and display) with various polynomial

expressions.

b. Demonstrate the functionality of the program by showing the results of different test cases.

8. Optional Challenge: Polynomial Multiplication by Scalar:

a. Implement a function named "multiplyPolynomialByScalar" to multiply a polynomial linked list

by a scalar (constant) value.

b. Display the original polynomial and the result of polynomial multiplication by scalar.

9. Optional Challenge: Polynomial Differentiation:

a. Implement a function named "differentiatePolynomial" to calculate the derivative of the

polynomial and store it in a new linked list.

b. Display the original polynomial and its derivative.

10. Optional Challenge: Polynomial Integration:

a. Implement a function named "integratePolynomial" to calculate the indefinite integral of the

polynomial and store it in a new linked list.

b. Display the original polynomial and its integral.

• Part 3 : Title: Postfix Expression Evaluation using Stack

1. Objective: The objective of this lab assignment is to implement the evaluation of postfix expressions

using a stack data structure in the C programming language.

2. Define the Stack Structure:

a. Define a structure named "StackNode" with the following members:

• "data" (integer) to store the value of the node.

• "next" (pointer to the next StackNode) to create the stack.

3. Stack Operations:

a. Implement stack operations as necessary, e.g., push, pop, peek etc.

4. Postfix Expression Evaluation:

a. Implement a function named "evaluatePostfixExpression" to evaluate a given postfix expression

and return the result.

b. Prompt the user to input a postfix expression containing numbers and operators (+, -, *, /).

c. Implement the algorithm to iterate through the expression, push operands onto the stack, and

perform operations when encountering operators.

5. Testing and Demonstration:

a. Test the postfix expression evaluation with various postfix expressions.

b. Demonstrate the functionality of the program by showing the results of different test cases.

6. Optional Challenge: Handling Expressions with Parentheses:

a. Extend the program to handle postfix expressions with parentheses.

b. Implement the algorithm to evaluate expressions with parentheses using appropriate stack

operations.

7. Extend to Infix to Postfix Conversion:

a. Implement a function named "convertInfixToPostfix" to convert an infix expression to a postfix

expression.

b. Prompt the user to input an infix expression, and then use the stack to convert it to postfix.

c. Implement the Shunting Yard algorithm or a similar approach to achieve the conversion.

8. Optional Challenge: Evaluate Infix Expressions:

a. Implement a function named "evaluateInfixExpression" to evaluate infix expressions using

postfix conversion and evaluation.

b. Combine the "convertInfixToPostfix" and "evaluatePostfixExpression" functions to achieve this.

• Part 4 : Hot Potato Game Simulation using Queues

1. Objective: The objective of this lab assignment is to implement and simulate the "Hot Potato" game

using a queue data structure in the C programming language.

2. Define the Queue Structure: Define a structure named "QueueNode" with the following members:

a. "name" (string) to store the name of the player.

b. "next" (pointer to the next QueueNode) to create the queue.

3. Queue Operations:

a. Implement a function named "createQueue" to create an empty queue and return its address.

b. Implement a function named "isEmpty" to check if the queue is empty.

c. Implement a function named "enqueuePlayer" to add a new player (name) to the queue.

d. Implement a function named "dequeuePlayer" to remove and return the front player from the

queue.

4. Hot Potato Game Simulation:

a. Implement a function named "playHotPotato" that simulates the "Hot Potato" game.

b. Prompt the user to input the names of players and the pass count (number of passes before

removing a player).

c. Use the queue operations to simulate passing the potato and removing players in a circular

manner.

d. Display the final player who gets eliminated from the game.

5. Testing and Demonstration:

a. Test the hot potato game simulation with various inputs to ensure correctness.

b. Demonstrate the functionality of the program by showing the results of different test cases.

6. Optional Challenge: Visualize the Game:

a. If desired, you can create a simple text-based visualization of the game progress.

b. Display the current player holding the potato and the queue of remaining players after each

pass.

7. Optional Challenge: Implement a Variable Pass Count:

a. Extend the program to allow for a variable pass count for each player (determined randomly or

input by the user).

b. Simulate the game with the variable pass count and display the final eliminated player.

8. Optional Challenge: Extend to Elimination Rules:

a. Implement more complex elimination rules (e.g., players with certain characteristics are

eliminated after certain passes).

b. Simulate the game with the new elimination rules and display the final eliminated player.

