
Assignment No. 4

Assignment Title: Divide and Conquer (DC) technique

Problem 1:

Binary Search is an Example of DC technique, where we divide the input data (given in an indexed and

sorted array) using its known size, and reduce the size of the problem.

a. Let us say you have an array that is sorted but rotated at some point, i.e., if the sorted array

elements are A = [a1, a2, … ak, ak+1, … an] the given array is A’ = [ak+1, … an a1, a2, … ak}; The goal is

to modify the binary search algorithm in such a way so that is can search for a key in A’ in O(log

n) time.

b. Now we are going to solve the same problem (find a given key) for an unknown input size.

Consider a monotonically increasing function f(n), i.e., for all two given integers n1 and n2, if n1<n2

then f(n1) < f(n2). Assume f(n) = x3 – 10x2 - 15x – 20. We want to know for which value of n the

function f(n) becomes positive for the first time.

c. Bonus: Consider a function f(n) which is a monotonically increasing at first, and after a certain

point it is a monotonically decreasing, i.e., there exist an integer n0, for which f(n0-1) < f(n0) and

f(n0) > f(n0+1). Consider the Gaussian function/ bell curve as f(n); We want to find the n0 for the

given f(n).

Tasks:

Write codes for solving both the above problems and analyze the complexity for the same.

Problem 2:

You remember Tower of Hanoi problem; this is another example of DC technique. You have n disks and 3

pegs; all disks are arranged from largest to smallest; you are to move the n disks from peg 1 to peg 2 using

the peg 3 as intermediate, by moving one disk at a time and never putting a larger disk over a smaller one.

Here also, you reduce the size of the problem from n disks to n-1 disks, and so on until you can solve the

problem.

Now you are going to consider the problem again but instead of 3 pegs, you have 4 pegs. You are now

moving from peg 1 to peg 2 using peg 3 and peg 4 as intermediate. We refer to the old problem as TOH3

and this new one as TOH4.

a. One method will be

• Move k (k<n) disks from peg 1 to peg 3, using peg 2 and peg 4 (TOH4)

• Move another (n-k-1) disks from peg 1 to peg 4 using peg 2 (TOH3)

• Move nth disk from peg 1 to peg 2

• Move n-k-1 disks from peg 4 to peg 2 using peg 1 (TOH3)

• Move n-k-1 disks from peg 4 to peg 2 using peg 1 and peg 4 (TOH4)

b. What value of k will be the best for the above given method? You can analyze the complexity of

the method to find out?

Tasks:

1. Write codes for the above given method for solve TOH4. (you also need TOH3 function for this to

work).

2. Analyze the complexity of the method to figure out what is the best value of k for the given

solution.

3. Bonus: Can you devise better solution for solving the problem? Analyze the complexity of your

solution to show how much better or worse your version is compared to the given one.

