
Problem 1: Rumour spreading

Rumour spreading is one of the basic mechanisms for information dissemination 
in networks. For simplicity, assume that rumour can be spread by either male or 
female person. Female person can spread the rumour by disseminating the 
information to other two female people and one male person, where as when 
male person can spread the rumour by disseminating the information to one 
female person and one male person. Assume that the spreading of rumour is 
clocked, that is, each spreading happens at the beginning of every minute.  At t 
= 0, we start the rumour spreading just by staring with a single female person.

Let Hn denote the number of female person and Ln the number of male person at 
time t = n. We have: 

H0 = 1, 

L0 = 0, 

Hn = 2Hn−1 +Ln−1 for n > 1,   

Ln = Hn−1 +Ln−1 for n > 1

Use a floating-point representation (preferably double) for Hn and Ln. These 
counts are integers but grow so rapidly that except for small values of n, int 
variables encounter overflow for storing them. Given an integer n ≥ 0, we want 
to compute Hn and Ln. Three ways of doing this are explained below. 

Method 0: Individual computation of Hn and Ln 

Write a function hirec(n) that returns Hn (and nothing else). Likewise, write a 
function lorec(n) to return Ln (and nothing else). The only parameter that may be 
passed to each of these functions is n. 

Method 1: Simultaneous computation of Hn and Ln 

Write a function hilorec(n) to return the pair (Hn,Ln) (in a structure or a two-
element array). Again, the only parameter allowed to be passed to the function is
n. Method 2: Use of Explicit formulas

Using techniques (slightly) beyond the scope of this course, we can obtain the 
following closed-form formulas valid for all n >= 0.

Write a function hiloformula(n) that uses these formulas to compute and return 
the pair (Hn, Ln)



Check for algolicious sequences:

The international chemistry Prof Heisenberg is in the making of a complex 
chemist compound. He knows he has to add n elements to make this complex 
chemist compound. These complex chemist compound are numbered 1,2,3,.....n.
The complex chemist compound becomes possible if the sequence of adding the 
elements is proper. Any improper sequence ruins the complex chemist 
compound altogether, so Prof Heisenberg asks for your help to ensure that his 
sequence is proper. A proper sequence is defined as follows.

Let S be the array storing the sequence. Assume that each compound (an 
integer in the range [1, n]) appears once and only once in S. In particular, the 
size of S is n. Take any three different compound a, b, c with 

1 ≤ a < b < c ≤ n

An improper placement of a,b, c in S is described by a situation like this: 

c           a           b
       I    j             k

Here, c, a, b need not appear consecutively, but their relative position in S of this
form is improper. The sequence S is called algolicious (and the complex chemist 
compound) if S does not contain any improper placement of a,b, c for all possible
choices of the compounds. For example, for n = 10, the sequence 
3,4,5,2,6,7,9,8,1,10 is algolicious, whereas the sequence 3,4,5,1,6,7,9,8,2,10 is 
not (see the improper placement of 1,2,5). Notice that the only improper order is 
largest-smallest-intermediate. All other combinations (like smallest largest-
intermediate) are proper.

Method 0: Brute force – O(n4 ) 
A direct translation of the above definition is to choose each combination a,b, c 
of compounds, find their positions j, k, i (as in the picture), check whether i < j < 
k, and if so, discard S as unalgolicious. If all checks discover proper placements, 
declare S as algolicious. There are  nC3  ≈ (n^3)/6 compound combinations. 
Since S is unsorted, you have to make linear search in S to locate the positions i, 
j, k. Therefore the running time is O(n 4 ). 

Method 1: Brute force, but better – O(n3 ) 
Instead of running the search on a,b, c, let us run the search on i, j, k. For each 
choice of the indices satisfying 0 ≤ i < j < k ≤ n − 1, take c = S[i] , a = S[j] , and 
b = S[k]. Then, check whether a < b < c. Since every compound appears at 
some position in S, this exhausts all compound combinations. Still, a factor of n is
gained.



Method 2: Brute force, more refinement – O(n 2 )
 For each i, set c = S[i]. Look at the subsequence of S[ i+1 , n−1] consisting of 
numbers < c . S is algolicious if and only if for each i, this subsequence is 
(strictly) decreasing. Therefore for each i, you need to make a single pass 
through the rest of the sequence, and another factor of n is gained.

Method 3: Good bye brute force – O(n) 
Welcome to the world of algorithms. Design an O(n)-time algorithm yourself.


