
Advanced Programming (OOP)
Unified Modeling Language (UML)

SDB

Spring 2025

SDB Advanced Programming 1 / 47



Unified Modeling Language (UML): Topics

SDB Advanced Programming 2 / 47



Software Requirements Specification (SRS) I

Definition: A Software Requirements Specification (SRS) is a detailed
document that describes the functional and non-functional requirements of
a software system.
Importance of SRS:

Serves as a contract between stakeholders and developers.

Ensures clarity of requirements and avoids scope creep.

Acts as a reference for validation and verification of the final product.

Helps in planning, design, development, and maintenance.

Key Components:

Introduction: Purpose, scope, and overview of the system.

Overall Description: System environment, user characteristics, and
constraints.

Functional Requirements: Specific functionalities the system must
support.

SDB Advanced Programming 3 / 47



Software Requirements Specification (SRS) II

Non-Functional Requirements: Performance, security, usability, and
reliability aspects.

System Architecture: High-level design and module interactions.

External Interfaces: Interaction with hardware, software, and users.

Assumptions and Dependencies: Any external factors influencing
system behavior.

Use Case Example: Consider an online banking system where the SRS
outlines functionalities like account management, fund transfers, and
security constraints such as encryption and authentication protocols.

SDB Advanced Programming 4 / 47



How UML Supports SRS

Relationship Between SRS and UML:

UML diagrams help visualize and refine requirements defined in the
SRS.
Ensure that all system functionalities described in the SRS have a
clear design representation.
Improve communication between stakeholders by providing a
structured, graphical representation of the system.

UML Diagrams Mapped to SRS Sections:

Use Case Diagram - Represents system functionalities and user
interactions.
Class Diagram - Defines system structure and relationships.
Sequence Diagram - Visualizes interactions between components.
Activity Diagram - Maps workflows and process logic.
State Machine Diagram - Models state transitions and behaviors.

Example: If an SRS describes a ”User Authentication” feature, UML Use
Case and Sequence Diagrams illustrate login interactions and
authentication flows.

SDB Advanced Programming 5 / 47



Introduction to UML

Definition: UML (Unified Modeling Language) is a standardized visual
language for modeling software systems.
Key Features:

Provides a blueprint for system architecture.

Supports object-oriented design and software documentation.

Helps in visualizing relationships between components.

Enhances communication between stakeholders.

Allows modeling of both static (structural) and dynamic (behavioral)
aspects of a system.

Types of UML Diagrams:

Structural Diagrams: Class, Object, Component, Deployment,
Package, Composite Structure, Profile.

Behavioral Diagrams: Use Case, Activity, State Machine, Sequence,
Communication, Interaction Overview, Timing.

SDB Advanced Programming 6 / 47



UML Relationships and Associations

Definition: UML relationships define how different elements in a model
interact.
Types of Relationships:

Association - A generic relationship between two classes.

Aggregation - A ”whole-part” relationship where parts can exist
independently.

Composition - A strong ”whole-part” relationship where parts
cannot exist independently.

Generalization - Represents inheritance between a superclass and a
subclass.

Dependency - One class depends on another for some functionality.

Realization - Indicates that a class implements an interface.

SDB Advanced Programming 7 / 47



UML Relationships

Class A Class B
Association

Whole Part
Aggregation

Whole Part
Composition

Superclass

Subclass 1 Subclass 2

Generalization

Dependent Class
Dependency

Interface

Implementing Class

Realization

SDB Advanced Programming 8 / 47



Real-World Examples of UML Relationships

Understanding UML Relationships Through Real-World Examples
Association: A teacher and a student have an association in a school
system. A teacher can teach multiple students, and a student can have
multiple teachers.
Aggregation: A university and its departments. Departments belong to a
university, but they can also exist independently if the university closes.
Composition: A house and its rooms. If the house is demolished, the
rooms no longer exist, making them completely dependent on the house.
Generalization: A car and a truck are both types of vehicles. They inherit
common properties like having wheels and an engine from the general
”Vehicle” category.
Dependency: A smartphone application depends on an external API for
weather updates. If the API changes, the app functionality may be
affected.
Realization: A payment system that implements a ”PaymentProcessor”
interface with different payment methods like Credit Card and PayPal.

SDB Advanced Programming 9 / 47



UML Stereotypes and Constraints

Definition: Stereotypes in UML provide a way to extend the language by
defining new model elements based on existing ones. Constraints impose
conditions on model elements to ensure consistency.
Common Stereotypes:

<<interface>> - Represents an interface.

<<entity>> - Represents a data-centric component.

<<controller>> - Represents a processing component in an MVC
architecture.

<<boundary>> - Represents interaction points between users and a
system.

Constraints:

Constraints define rules that must be followed by UML elements.

Expressed using Object Constraint Language (OCL) or informal
descriptions.

Example: {balance >= 0} ensures an account balance cannot be
negative.
SDB Advanced Programming 10 / 47



UML Stereotypes and Constraints: Standard
Representation

<<entity>>Account <<controller>>AccountManager

<<boundary>>UserInterface

interacts

manages

{balance >= 0}

SDB Advanced Programming 11 / 47



UML Modeling Best Practices

When to Use Different Diagrams:

Use Class Diagrams for structural design.

Use Sequence Diagrams to model interaction flows.

Use Activity Diagrams for workflow modeling.

Use Use Case Diagrams to capture user interactions.

Common Mistakes in UML Modeling:

Overcomplicating diagrams with too many elements.

Using incorrect relationships between components.

Not maintaining consistency across different UML diagrams.

SDB Advanced Programming 12 / 47



Online Shopping System I
Example SRS

The following Software Requirements Specification (SRS) document
outlines the functional and non-functional requirements for an online
shopping system.
1. Introduction

Purpose: Define the features and scope of
the online shopping system.

Scope: The system enables users to
browse, purchase, and manage orders
securely.

Stakeholders: Customers, Administrators,
System Developers, Payment Providers.

2. Overall Description

System Environment: Web and
mobile-based application.

User Characteristics: Customers with
varying levels of technical proficiency.

Constraints: Compliance with PCI-DSS
for secure transactions.

SDB Advanced Programming 13 / 47



Online Shopping System II
Example SRS

3. Functional Requirements

Users should be able to create accounts and log in securely.

The system should allow product browsing and filtering.

Users can add, update, and remove items from their cart.

The checkout process should include multiple payment options.

Order tracking should be available in real-time.

Administrators should be able to manage inventory and generate reports.

4. Non-Functional Requirements

Performance: The system should handle 1000+ concurrent users.

Security: Must encrypt sensitive user data using AES-256.

Scalability: Should be able to integrate with third-party APIs.

Usability: Should have an intuitive UI with accessibility support.

Availability: 99.9

SDB Advanced Programming 14 / 47



Online Shopping System III
Example SRS

5. System Architecture Overview
Components:

User Interface (Web and
Mobile Frontend)

Business Logic Layer
(Order Processing, Cart
Management)

Database Layer (User,
Product, Order
Information)

Payment Gateway
Integration (Stripe,
PayPal)

User Interface

Business Logic

Database Layer

Payment Gateway

API Calls

Data Storage

Process Payments

6. Use Case Scenarios

Customer Browsing: A user logs in, searches for products, and adds them to the cart.

Checkout Process: User proceeds to checkout, selects a payment method, and completes
the purchase.

Order Tracking: The user checks order status and receives updates.

Inventory Management: Admins update stock levels and view product sales.

SDB Advanced Programming 15 / 47



Online Shopping System IV
Example SRS

7. External Interfaces

Payment Gateway (Stripe, PayPal) for secure transactions.

Email/SMS Notification Services for order updates.

Third-party API Integration (Shipping, Product Catalogs).

8. Assumptions and Dependencies

Users must have stable internet connectivity for real-time updates.

The system depends on third-party services for payment and delivery tracking.

Compliance with regional data protection laws (GDPR, CCPA) is required.

SDB Advanced Programming 16 / 47



UML Class Diagram

Class diagrams represent the structure of a system by showing its classes,
attributes, methods, and relationships.
Example Class Diagram:

Car
- brand: String
- speed: int

+ accelerate(): void
+ brake(): void

ElectricCar
- batteryLevel: int
+ charge(): void

Key Relationships:

Inheritance (ElectricCar
extends Car)

Composition (Car has Engine)

Association (Car interacts with
Driver)

SDB Advanced Programming 17 / 47



Class Diagram: Online Shopping System

Explanation:
The User class interacts
with the system to browse
and purchase products.

The Product class contains
details about each product.

The ShoppingCart class
holds selected items and
facilitates checkout.

The Order class processes
orders and tracks their
status.

The Payment class
manages transactions and
interactions with payment
gateways.

User
- userID
- name
- email
——————
—-
+ browseProd-
ucts()
+ addToCart()

ShoppingCart
- items
——————
—-
+ addItem()
+ re-
moveItem()
+ checkout()

Product
- productID
- name
- price
——————
—-
+ getDetails()

Order
- orderID
- orderStatus
——————
—-
+ processOr-
der()
+ trackOrder()

Payment
- paymentID
- amount
——————
—-
+ processPay-
ment()

manages
contains

creates

processes

SDB Advanced Programming 18 / 47



UML Component Diagram

A Component Diagram represents the high-level structure of a system,
showing its components and dependencies.
Key Elements:

Components (Modules of a
system)

Interfaces (Provided/required
connections between
components)

Dependencies (Relationships
between components)

Web Server Application Server

Database Server

HTTP Request

SQL Query

SDB Advanced Programming 19 / 47



Component Diagram: Online Shopping System

Explanation:
The system is divided into
different components, each
responsible for specific
functionality.

The User Interface
component handles
customer interactions.

The Shopping Service
component manages
shopping cart operations
and order processing.

The Payment Service
handles transactions and
external payment gateway
interactions.

The Database component
stores all product, user,
and order information.

User Interface

Shopping Service

Order Processing

Payment Service

Database

interacts with

manages

stores data

requests payment

logs transactions

SDB Advanced Programming 20 / 47



Deployment Diagram

Deployment diagrams model the physical deployment of software artifacts
onto hardware nodes.

Application Server

Database Server

Data Exchange

Key Elements:

Nodes (Physical devices/servers)

Artifacts (Deployed software
components)

Connections (Communication
links between nodes)

SDB Advanced Programming 21 / 47



Deployment Diagram: Online Shopping System

Explanation:
The system is deployed
across multiple nodes.

The Client Device hosts
the user interface for
customer interactions.

The Web Server manages
business logic and serves
requests.

The Application Server
handles order processing
and payment transactions.

The Database Server
stores user, product, and
order data.

Secure communication
occurs between
components.

Client Device

Web Server

Application Server

Database Server

HTTP Request

Process Request

Query Data Return Data

Response

HTML Response

SDB Advanced Programming 22 / 47



UML Use Case Diagram

Use case diagrams show the interactions between users (actors) and the
system.
Example Use Case Diagram:

Start Engine

Drive Car

Stop Engine

Driver

Key Elements:

Actors (Users interacting with
the system)

Use Cases (Functionalities of
the system)

Relationships (Associations
between actors and use cases)

SDB Advanced Programming 23 / 47



Use Case Diagram: Online Shopping System

Scenario: Online Shopping System

Customer

Administrator

Browse Products

Add to Cart

Checkout

Make Payment

Track Order

Cancel Order

Manage Inventory

Generate Reports

Manage User Accounts

Online Shopping System

Explanation:

The Customer interacts with
the system to browse, purchase,
and track orders.

The Administrator manages
inventory, generates reports,
and handles user accounts.

The system boundary groups all
system functionalities.

The layout has been optimized
to avoid overlapping, ensuring
clarity.

SDB Advanced Programming 24 / 47



UML Sequence Diagram

Sequence diagrams depict object interactions over time.
Example Sequence Diagram:

User System Database

Enter credentials

Validate credentials

Validation result

Grant/Deny access

Key Elements:

Actors and Objects (Users, system components)

Lifelines (Dashed vertical lines showing object lifespan)

Messages (Interactions between objects)

SDB Advanced Programming 25 / 47



Sequence Diagram: Online Shopping Process

Explanation:
The user initiates the
process by browsing
products.

The system retrieves
product details and displays
them.

The user adds items to the
cart and proceeds to
checkout.

Payment details are
processed, and the system
confirms the order.

A confirmation message is
sent to the user, and the
order is forwarded to
fulfillment.

User System Database
Payment
Gateway

Browse Products

Fetch Product Details

Return Product Data

Display Products

Add to Cart

Process Payment

Payment ConfirmationOrder Confirmed

SDB Advanced Programming 26 / 47



UML Object Diagram

Object diagrams provide a snapshot of instances of classes at a particular
moment in time, illustrating the relationships between objects.

Represents real-world
examples of class
structures.

Showcases object
relationships and
attribute values.

Useful for debugging and
understanding class
behavior.

Car1: Car
brand = ”Toyota”

speed = 60

Car2: Car
brand = ”Honda”

speed = 50

Driver1: Person
name = ”Alice”

Driver2: Person
name = ”Bob”

drives

drives

Use Case: Object diagrams help in analyzing real-world object
interactions, debugging runtime behavior, and validating class diagrams.

SDB Advanced Programming 27 / 47



Object Diagram: Online Shopping System

Explanation:
Illustrates real-time
examples of objects and
their connections.

The User instance interacts
with the system to browse
and purchase products.

The Cart object holds
selected items.

The Order instance
represents a purchase
request.

The Payment object
handles the transaction.

User: John
- userID:
101
- name:
”John
Doe”

ShoppingCart
- cartID:
C123
- items: 2

Order
- orderID:
O456
- status:
”Process-
ing”

Payment
- paymen-
tID: P789
- amount:
Rs. 150

adds items

creates

processes

SDB Advanced Programming 28 / 47



UML Package Diagram

Package diagrams organize elements into meaningful groups to manage
complexity.
Key Elements:

Packages (Logical
grouping of related
classes and interfaces)

Dependencies
(Relationships between
different packages)

UI Module Business Logic

Database Module

SDB Advanced Programming 29 / 47



Package Diagram: Online Shopping System

Explanation:
Packages group related
classes together to improve
modularity.

The User Interface
Package handles user
interactions.

The Shopping Package
manages cart operations
and order placement.

The Payment Package
handles transactions.

The Database Package
stores and retrieves data.

Dependencies between
packages show how they
interact.

User Interface Package

Shopping Package

Payment Package

Database Package

uses

calls

retrieves data

stores transactions

SDB Advanced Programming 30 / 47



UML Composite Structure Diagram

Composite structure diagrams show the internal structure of a class and
how its parts interact.
Key Points:

Illustrating
component-based
architectures.

Showing collaboration
between objects within a
system.

Car

Engine Wheels

has has

Use Case: Composite structure diagrams help illustrate internal object
composition, component interactions, and hierarchical structures within a
system.

SDB Advanced Programming 31 / 47



Composite Structure Diagram: Online Shopping System

Explanation:
Represents how
components interact within
an object.

The ShoppingCart class
contains multiple Product
instances.

The Order class aggregates
multiple items and
manages payment.

The User class interacts
with both the cart and the
order process.

User
- userID
- name

ShoppingCart
- cartID
- items[]

Order
- orderID
- status

Product
- productID
- name
- price

Payment
- paymen-
tID
- amount

manages

creates

contains

processes

SDB Advanced Programming 32 / 47



UML Activity Diagram

Activity diagrams represent workflows and processes.

Key Elements:

Actions (Tasks or
operations performed)

Decision Nodes
(Conditional branching
points)

Start and End Nodes
(Indicating workflow
initiation and
completion)

Start

Enter Credentials

Valid?

Access System Deny Access

End

Yes No

SDB Advanced Programming 33 / 47



Activity Diagram: Online Shopping Process

Explanation:

The user starts by
browsing products.

Products can be added
to the cart, followed by
checkout.

A decision point allows
the user to either
proceed with payment or
cancel the order.

After successful
payment, the order is
confirmed and the
process ends.

Browse Products

Add to Cart

Checkout

Make Payment

Order Confirmation

Cancel Order
ProceedCancel

SDB Advanced Programming 34 / 47



UML State Machine Diagram

State machine diagrams depict the different states of an object and how it
transitions between states.

Key Components:

States (Representing different
conditions of an object)

Transitions (Arrows indicating state
changes)

Events (Triggers causing state
transitions)

Start

Idle

Processing

Completed

Trigger

Done

SDB Advanced Programming 35 / 47



State Machine Diagram: Order Processing

Explanation:
Represents the states of an
Order object in an online
shopping system.

The order transitions
through different stages
based on user and system
actions.

States include New Order,
Processing, Shipped, and
Delivered.

New Order

Processing

Shipped

Delivered

Payment Confirmed

Order Packed

Order Received

SDB Advanced Programming 36 / 47



UML Communication Diagram

Communication diagrams illustrate message exchanges between
objects.

Communication diagrams show interactions between objects,
emphasizing the relationships rather than the order of messages.

Key Features:

Focus on message
flow rather than
time sequence.

Depicts interactions
between objects for
a specific use case.

User UI Layer Business Logic Database

Clicks Button Sends Request Fetch Data

SDB Advanced Programming 37 / 47



Communication Diagram: User Purchase Process

Explanation:
Shows interactions during
the purchase process.

Objects involved: User,
ShoppingCart, Order,
PaymentSystem.

Messages include adding
items, checking out, and
processing payments.

User ShoppingCart

Order

PaymentSystem

1: addItem()

2: createOrder()

3: processPayment()

SDB Advanced Programming 38 / 47



UML Interaction Overview Diagram

Interaction overview diagrams combine sequence and activity
diagrams.

They provide a high-level view of interactions within a system,
combining elements of activity and sequence diagrams.

Key Points:

Representing high-level workflow
processes.

Showing different interaction
sequences within a system.

Use Case: Interaction Overview
Diagrams are useful for modeling
high-level workflows that include
multiple interactions.

Start Process

Condition

Interaction A Interaction B

End Process

True False

SDB Advanced Programming 39 / 47



Interaction Overview Diagram: Online Shopping

Explanation:
Represents an overview of
the user shopping process
with branching paths.

Includes browsing, adding
items, checkout, different
payment methods, and
order confirmation.

Shows conditional paths for
successful and failed
transactions.

Browse Products

Add to Cart

Checkout

Select PaymentCredit Card PayPal

Order Confirmation

Option 1 Option 2

SDB Advanced Programming 40 / 47



UML Timing Diagram

Timing diagrams show time-dependent behavior of objects.
Key Elements:

Lifelines (Object states
over time)

State Changes
(Transitions triggered by
time events)

Time Axis (Representing
the progression of time)

Time

Idle Processing Completed

Trigger Done

SDB Advanced Programming 41 / 47



Timing Diagram: Payment Processing

Explanation:
Shows the detailed timing of events in payment processing.

Tracks state transitions such as Initiated, Processing, Authorized, Completed, and Failed.

Helps in understanding real-time event dependencies.

Time

Payment Initiated Processing Authorized Completed

Failed

Transaction
Ongoing

Awaiting
Bank
Approval

Payment
Success-
ful

Payment
Declined

SDB Advanced Programming 42 / 47



UML and Design Patterns

Connection Between UML and Design Patterns:

UML diagrams help visualize and document design patterns in
software architecture.

Structural patterns are represented using Class and Component
Diagrams.

Behavioral patterns are modeled using Sequence and Activity
Diagrams.

SDB Advanced Programming 43 / 47



Class Diagrams and Structural Design Patterns

Examples:

Singleton Pattern - Represented as a class with a private
constructor and static instance.

Factory Pattern - Shown as a class that creates instances of other
classes.

Adapter Pattern - Demonstrates how two incompatible interfaces
can work together.

Composite Pattern - Represents tree structures with parent-child
relationships.

SDB Advanced Programming 44 / 47



Sequence Diagrams and Behavioral Design Patterns

Examples:

Observer Pattern - Sequence diagrams show how observers receive
updates from subjects.

Strategy Pattern - Shows the dynamic selection of algorithms at
runtime.

Command Pattern - Represents how requests are encapsulated and
executed.

SDB Advanced Programming 45 / 47



Component and Deployment Diagrams for Architectural
Patterns

Examples:

Model-View-Controller (MVC) - Component diagrams represent
models, views, and controllers.

Microservices Architecture - Deployment diagrams visualize
distributed services.

Layered Architecture - Showcases different software layers and their
dependencies.

SDB Advanced Programming 46 / 47



Summary of UML Diagrams

Main Features and Use Cases:

Class Diagram - Represents system structure (Use for
object-oriented design).
Use Case Diagram - Shows user interactions (Use in requirements
gathering).
Sequence Diagram - Models interactions over time (Use for
dynamic behavior).
Activity Diagram - Represents workflows (Use for business process
modeling).
State Machine Diagram - Shows object states and transitions (Use
for lifecycle modeling).
Component Diagram - Illustrates software components (Use for
modular system design).
Deployment Diagram - Visualizes system deployment (Use for
infrastructure planning).
Communication Diagram - Emphasizes object relationships (Use for
message-driven systems).
Timing Diagram - Shows time-based object interactions (Use for
real-time systems).

SDB Advanced Programming 47 / 47


