Advanced Programming (OOP)

Module 4: Access Modifiers, Exceptions, and Multithreading

SDB

SDB

Spring 2025

Advanced Programming 1/

Module 4: Topics

Access Modifiers: Public, Private, Protected, and Default.
Java APIs and Packages

User-Defined Exceptions.

°
°
@ Exception Handling: Try, Catch, Finally, Throw, and Throws.
°
°

Basics of Multithreading and Synchronization.

SDB Advanced Programming

2/

Outline

@ Access Specifiers

Access Specifiers in Java

Definition: Access specifiers define the visibility and accessibility of
classes, methods, and variables in Java.

Types of Access Specifiers:

Public: Accessible from anywhere.

Private: Accessible only within the same class.

Protected: Accessible within the same package and subclasses.
Default (Package-Private): Accessible only within the same
package.

Example:

class Example {
public int publicVar = 10;
private int privateVar = 20;
protected int protectedVar = 30;
int defaultVar = 40; // Default access

Listing 1: Access Specifiers

SDB Advanced Programming Access Specifiers

The ‘this’ and ‘super’ Keywords

‘this‘ Keyword:

@ Refers to the current instance of the class.

@ Used to access current class methods, fields, and constructors.

@ Resolves naming conflicts between instance variables and parameters.
‘super’ Keyword:

@ Refers to the immediate parent class instance.

@ Used to call parent class methods and constructors.

@ Accesses hidden fields or overridden methods in the parent class.

SDB Advanced Programming Access Specifiers 4 /55

Examples: ‘this' and ‘super’ |

Using ‘this’ to Resolve Naming Conflicts:

class Example {
int value;

Example (int value) {

parameter

}
void display() {

Refers to instance wvariable

System.out.println("Value: " + this.value);

this.value = value; // Resolves conflict with

/7

Listing 2: Using this Keyword

SDB Advanced Programming Access Specifiers

Examples: ‘this' and ‘super’ Il

Using ‘super’ to Access Parent Class Members:

class Parent {
void show() {
System.out.println("Parent method");

class Child extends Parent {
void show() {

System.out.println("Child method");

super .show(); // Calls parent class method

Listing 3: Using super Keyword

SDB Advanced Programming Access Specifiers

Outline

© APl in Java

Introduction to Java API

Definition: Java API (Application Programming Interface) is a collection
of prewritten classes, interfaces, and packages that provide standard
functionality for building Java applications.

Key Features:

@ Vast collection of libraries for various functionalities.
@ Simplifies application development by providing reusable components.
@ Organized into packages (e.g., ‘java.util’, ‘java.io).
Example:
@ Collections Framework: Handling data structures.
@ Streams API: Data processing.

@ Concurrency Utilities: Multithreading and parallelism.

SDB Advanced Programming APl in Java

Java APIl: Commonly Used Packages

1. ‘java.lang‘: Core classes.

@ 'Object’: The root class of the Java hierarchy.

@ ‘String': Immutable strings.

@ ‘Math’: Mathematical operations.
2. ‘java.util‘: Utility classes.

@ 'ArrayList’: Resizable arrays.

e ‘HashMap': Key-value pairs.

@ ‘Date": Date and time handling.
3. ‘java.io’: Input and output.

@ ‘File': File operations.

o 'BufferedReader': Reading text.

o 'PrintWriter': Writing text.

SDB Advanced Programming APl in Java

8/

55

Example: Using ‘java.util’ Package

Working with Collections:

import java.util.x*;

public class CollectionsExample {
public static void main(String[] args) {

List<String> list = new ArrayList<>();

list.add("Alice");
list.add("Bob");
list.add("Charlie");
list.forEach(System.out::println);
}
Listing 4: ArrayList Example
SDB Advanced Programming APl in Java

Advanced API: Java Streams

Definition: A Java Stream is a sequence of elements supporting
sequential and parallel aggregate operations.
Example:

import java.util.x;
import java.util.stream.x;

public class StreamsExample {
public static void main(String[] args) {
List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5);

int sum = numbers.stream ()
.filter(n—>n % 2 = 0)
.mapTolnt(n —> n * n)
.sum () ;

System.out.println("Sum of squares of even numbers: " + sum);

Listing 5: Streams Example

SDB Advanced Programming APl in Java

Concurrency Utilities in Java API

Key Classes:
@ 'ExecutorService': Managing thread pools.
@ 'ConcurrentHashMap': Thread-safe key-value pairs.
@ 'CountDownLatch’: Synchronizing threads.
Example: Using ‘ExecutorService*

import java.util.concurrent.x*;

public class ExecutorExample {
public static void main(String[] args) {
ExecutorService executor = Executors.newFixedThreadPool(2);

() = System.out.println("Task 1");
() = System.out.println("Task 2");

Runnable taskl
Runnable task2

executor.submit(taskl);
executor.submit(task2);

executor .shutdown () ;

Listing 6: ExecutorService Example

SDB Advanced Programming APl in Java 11 / 55

Advantages of Java API

Provides prebuilt, well-tested components.

Encourages best practices and standardization.

Enhances code readability and maintainability.

SDB Advanced Programming APl in Java

Saves development time by avoiding reinventing the wheel.

Disadvantages of Java API

Steep learning curve for beginners.
Potential for misuse or overuse of APls.

Some classes and methods may have performance overhead.

Deprecated APIs can lead to maintenance issues.

SDB Advanced Programming APl in Java

Common Mistakes Using Java API

1. Misusing Collections:

Map<String, String> map = new HashMap<>();
map .put (null, "Value"); // Null keys allowed in HashMap

Listing 7: HashMap Key Issue

2. Ignoring Exceptions:

try (BufferedReader br = new BufferedReader (new
FileReader ("file.txt"))) {
System.out.println(br.readLine ());

} catch (IOException e) {
// No handling of exzception

}

Listing 8: Ignoring |OException

SDB Advanced Programming APl in Java 14 / 55

Best Practices for Using Java API

Read and understand the APl documentation.

Use appropriate APls for the task (e.g., ‘ArrayList’ for lists,
‘HashMap* for maps).

Avoid deprecated methods or classes.

Write unit tests for code using APl methods.

Leverage modern APIs (e.g., Streams, Concurrency Utilities) for
better performance and clarity.

SDB Advanced Programming APl in Java

Outline

© Java Packages

Introduction to Java Packages

Definition: A package in Java is a namespace that organizes classes and

interfaces, preventing naming conflicts and improving modularity.
Key Features:

o Facilitates code reusability and organization.
@ Controls access using access modifiers.

@ Provides built-in libraries and user-defined groupings.
Types of Packages:

@ Built-in packages (e.g., ‘java.util’, ‘java.io").
@ User-defined packages.

Advanced Programming Java Packages 16 / 55

Creating and Using Packages |

Steps to Create a Package:
@ Use the ‘package’ keyword to define a package.
@ Compile the file with the package name.
@ Use ‘import’ to access the package in other files.

Example:

// File: MyPackage/MyClass. java
package MyPackage;

public class MyClass {
public void display () {
System.out.println("Hello from MyPackage");
}

Listing 9: Creating a Package

SDB Advanced Programming Java Packages

Creating and Using Packages Il

// File:

Main. java

public class Main {
public static void main(String[] args) {

MyClass obj

import MyPackage.MyClass;

= new MyClass ();

obj.display () ;

Listing 10: Using a Package

Advanced Programming Java Packages

18 /

Built-in Java Packages

Common Built-in Packages:
e ‘java.lang‘: Core classes (e.g., ‘String’, ‘Math").

e ‘java.util’: Data structures and utilities (e.g., ‘ArrayList’,
‘HashMap*).

@ ‘java.io’: Input/output operations (e.g., ‘File', ‘BufferedReader").
e ‘java.net’: Networking (e.g., ‘Socket’, ‘URL").

e ‘java.sql‘: Database access (e.g., ‘Connection’, ‘ResultSet').

SDB Advanced Programming Java Packages 19 / 55

Advanced Concept: Sub-packages |

Definition: A sub-package is a package within a package, allowing further
modularization.
Example:

// File: MyPackage/SubPackage/MySubClass. java
package MyPackage.SubPackage;

public class MySubClass {
public void display () {
System.out.println("Hello from SubPackage");
}

Listing 11: Creating Sub-packages

SDB Advanced Programming Java Packages 20 / 55

Advanced Concept: Sub-packages Il

import MyPackage.SubPackage.MySubClass;

public class Main {
public static void main(String[] args) {
MySubClass obj = new MySubClass();
obj.display () ;

Listing 12: Using Sub-packages

SDB Advanced Programming Java Packages

Access Modifiers and Packages

Access Levels:

Public: Accessible from any package.

Protected: Accessible within the same package and subclasses.

Default: Accessible only within the same package.

Private: Not accessible outside the class.

Example:

package MyPackage;

public class MyClass {
public void publicMethod () {3}
protected void protectedMethod () {}
void defaultMethod () {}
private void privateMethod () {}

Listing 13: Access Modifiers

SDB Advanced Programming Java Packages

Advantages and Disadvantages of Packages

Advantages:
@ Avoids naming conflicts by providing namespaces.
@ Enhances modularity and maintainability.
o Facilitates reusability of code.
@ Provides access control through access modifiers.
o Simplifies project structure in large applications.
Disadvantages:
@ Increases complexity in smaller projects.
@ Requires understanding of package structure and imports.
@ Mismanagement of package structure can lead to confusion.
°

Longer compilation and execution commands.

SDB Advanced Programming Java Packages

Common Mistakes with Packages |

1. Misplacing Classes:

// File is not in the correct directory matching the
package mame

package MyPackage;

public class MyClass {}

2. Ignoring Imports:

// Error: MyPackage.MyClass not found
MyClass obj = new MyClass();

3. Duplicate Class Names:

import java.util.Date;
import java.sql.Date; // Conflict

SDB Advanced Programming Java Packages

Common Mistakes with Packages ||

4. Using Deprecated APls:
@ Relying on outdated methods or classes leads to compatibility issues.
@ Example: Using ‘java.util.Date’ instead of ‘java.time.LocalDate".

5. Inadequate Exception Handling: Ignoring exceptions from APIs can
cause hidden bugs.

File file = new File("example.txt");
file.createNewFile(); // Throws IOEzception, unhandled

6. Overuse of Wildcard Imports: Importing entire packages
unnecessarily can lead to name conflicts and increased memory usage.

import java.util.x*; // Avoid if importing only ome class

Advanced Programming Java Packages

Common Mistakes with Packages Il

7. lgnoring Access Modifiers: Misusing ‘protected’ or ‘default’ access
can expose sensitive functionality.

package mypackage;

class SensitiveData {
String secret = "Hidden"; // Ezposed to entire
package

SDB Advanced Programming Java Packages 26 / 55

Best Practices for Using Packages

Follow a consistent naming convention (e.g., ‘com.company.project’).
Avoid creating excessively deep package hierarchies.
Group related classes logically.

Use access modifiers to encapsulate and protect data.

Leverage built-in packages for standard functionalities before creating
custom ones.

SDB Advanced Programming Java Packages

Outline

@ Exception Handling

Introduction to Exception Handling in Java

Definition: Exception handling is a mechanism to handle runtime errors,
ensuring the normal flow of the application.
Key Concepts:

@ An exception is an event that disrupts the normal flow of the program.

@ Exception handling uses ‘try‘, ‘catch’, ‘finally’, ‘throw’, and ‘throws’
keywords.

@ Java has a robust hierarchy of exceptions.

Advanced Programming Exception Handling

Types of Exceptions in Java

1. Checked Exceptions:
@ Compile-time exceptions.
@ Must be handled using try-catch or declared using ‘throws'.
@ Examples: 'lOException’, ‘'SQLException’.
2. Unchecked Exceptions:
@ Runtime exceptions.
@ Not mandatory to handle.

@ Examples: ‘NullPointerException’,
‘ArraylndexOutOfBoundsException’.

3. Errors:
@ Serious issues that the application cannot handle.

@ Examples: ‘StackOverflowError’, ‘OutOfMemoryError".

SDB Advanced Programming Exception Handling

Basic Exception Handling Syntax

Syntax:

try {
// Code that may throw an exception
} catch (ExceptionType e) {
// Handle exception
} finally {
// Code that always executes
}

Listing 14: Basic Exception Handling

Example:

public class ExceptionExample {
public static void main(String[] args) {

try {
int result =10 / 0; // May throw ArithmeticException

} catch (ArithmeticException e) {
System.out. printIn (" Error: Division by zero.");

} finally {
System.out. println (" Execution complete.”);

Listing 15: Try-Catch Example

SDB Advanced Programming Exception Handling 30 / 55

Using Multiple Catch Blocks

Example:

public class MultiCatchExample {
public static void main(String[] args) {
try {
String text = null;
System.out.println(text.length()); //
NullPointerExzception
} catch (NullPointerException e) {
System.out.println("Null value encountered.")
} catch (Exception e) {
System.out.println("General exception: " + e.
getMessage ());

Listing 16: Multiple Catch Blocks

SDB Advanced Programming Exception Handling 31 /55

Nested Try-Catch Blocks

Definition: Nesting allows try-catch blocks within another try block to
handle different exceptions at different levels.
Example:

public class NestedTryExample {
public static void main(String[] args) {
try {
try {
int data = 50 / 0; // ArithmeticException
} catch (ArithmeticException e) {
System.out.printin(”"Inner catch: Division by zero”);
}

String s = null;

System.out. printin(s.length()); // NullPointerException
} catch (NullPointerException e) {

System.out.printin (" Outer catch: Null value”);

Listing 17: Nested Try-Catch Blocks

Advanced Programming Exception Handling

Exception Propagation

Definition: Exceptions propagate from the method where they occur to
its caller, unless handled.

Example:

pub

lic class PropagationExample {
public void methodl() {

int data = 50 / 0; // Throws ArithmeticException

public void method2() {
methodl(); // Exception propagates here

public static void main(String[] args) {
PropagationExample obj = new PropagationExample();
try {

obj.method2();
} catch (ArithmeticException e)

System.out.println (" Caught: " + e.getMessage());
}

Listing 18: Exception Propagation

Advanced Programming Exception Handling

33/ 55

Advantages of Exception Handling

Separates error-handling code from regular code.
Enhances program reliability and robustness.
Prevents abrupt termination of the program.

Allows handling of different types of exceptions.

Enables centralized error logging.

SDB Advanced Programming Exception Handling

Advanced Exception Handling: Re-Throwing Exceptions

Definition: Re-throwing allows exceptions to be caught and re-thrown to
higher levels for additional handling.

Example:
public class ReThrowExample {
public static void processFile() throws |OException {
throw new |OException(” File error”);
}
public static void main(String[] args) {
try {
processFile();
} catch (10Exception e) {
System.out. printin(”Handling and re—throwing”);
throw new RuntimeException(e);
}
¥
}

Listing 19: Re-Throwing Exceptions

SDB Advanced Programming Exception Handling

Best Practices for Exception Handling

Always catch specific exceptions.

Use ‘finally' or try-with-resources to release resources.
Avoid using exceptions for normal control flow.
Provide meaningful error messages.

Log exceptions for debugging and auditing.

Use custom exceptions for domain-specific error representation.

SDB Advanced Programming Exception Handling

Custom Exceptions

Definition: Custom exceptions allow you to create user-defined exceptions
specific to your application’s needs.
Example:

class InvalidAgeException extends Exception {
public InvalidAgeException(String message) {
super(message);

}

public class CustomExceptionExample {
public static void validate(int age) throws InvalidAgeException {
if (age < 18) {
throw new InvalidAgeException(”Age must be 18 or older.”);

}
}
public static void main(String[] args) {
try {
validate (15);
} catch (InvalidAgeException e) {
System.out. println (" Caught exception: " + e.getMessage());
¥

Listing 20: Custom Exception
SDB Advanced Programming Exception Handling

Exception Chaining

Definition: Exception chaining is a technique where one exception is
linked to another as its cause.

Example:

public class ChainingExample {
public static void main(String[] args) {
try {
throw new Exception("Root Cause", new

NullPointerException("Null Pointer"));
} catch (Exception e) {

System.out.println("Exception: "

+ e.
getMessage ());
System.out.println("Cause: " + e.getCause());
}
}
}
Listing 21: Exception Chaining
SDB

Advanced Programming Exception Handling

38 / 55

Outline

© Multithreading

Introduction to Multithreading in Java |

Definition: Multithreading is a feature in Java that allows concurrent

execution of two or more threads, enabling maximum utilization of CPU.
Key Concepts:

@ A thread is the smallest unit of a process.

@ Java provides built-in support for multithreading through the ‘Thread'
class and the ‘Runnable’ interface.

@ Threads can run independently, sharing resources of the same process.
Why Multithreading?

o Improved Performance: Utilize CPU cores effectively by executing
tasks in parallel.

o Responsiveness: Keep the application responsive (e.g., GUIs) by
running background tasks.

@ Concurrency: Allow multiple operations to proceed simultaneously.

Advanced Programming Multithreading 39 /55

Introduction to Multithreading in Java Il

Challenges and Caveats:

@ Race Conditions: When threads access shared resources
simultaneously, leading to inconsistent states.

o Deadlocks: Threads waiting indefinitely for each other to release
resources.

@ Thread Interference: One thread's modifications overwrite
another’s changes.

o Debugging Difficulty: Multithreading issues are harder to reproduce
and debug.

Use Case Example:

@ A web server handling multiple client requests simultaneously using
threads.

o Video processing while playing audio in multimedia applications.

SDB Advanced Programming Multithreading 40 / 55

Thread Life Cycle

States of a Thread:

@ New: A thread object is created but not started.

°
@ Running: A thread is executing.
°
°

Thread Life Cycle Diagram:

Terminated: A thread completes its execution.

Runnable: A thread is ready to run but waiting for CPU.

Blocked /Waiting: A thread is waiting for resources or other threads.

Runnable

SDB Advanced Programming Multithreading

wait()/blocked

Blocked/Waiting

Execution
heduled | [5——— Complete
Schedule 1 Running %Terminated

41 / 55

Creating Threads in Java — Two ways

class MyThread extends Thread {
public void run() { System.out.println(” Thread is running.");}

public class Test {
public static void main(String[] args) {
MyThread thread = new MyThread();
thread.start ();

Listing 22: Extending Thread Class

class MyRunnable implements Runnable {
public void run() { System.out.printin(”"Thread is running.”);}

public class Test {
public static void main(String[] args) {
Thread thread = new Thread(new MyRunnable());
thread.start();

Listing 23: Implementing Runnable Interface

SDB Advanced Programming Multithreading

Thread Priorities

Thread Priority Levels:
e MIN_PRIORITY (1): Lowest priority.
e NORM_PRIORITY (5): Default priority.
o MAX_PRIORITY (10): Highest priority.
Setting Priority:

Thread thread = new Thread(new MyRunnable());
thread.setPriority (Thread.MAX_PRIORITY);

Listing 24: Setting Thread Priority

Note: Thread priorities are not guaranteed to be respected by the JVM.

Advanced Programming Multithreading 43 /55

Comparison: ‘Thread’ vs ‘Runnable’

Thread Class:

@ Inherits the ‘Thread' class directly.

@ Cannot inherit from another class simultaneously.

@ Suitable for simple tasks with no need for multiple inheritance.
Runnable Interface:

@ Implements the ‘Runnable’ interface.

@ Allows the class to inherit from other classes.

@ Better for complex designs requiring multiple inheritance.

SDB Advanced Programming Multithreading 44 / 55

Advantages of Multithreading

o Efficient CPU utilization through concurrent execution.

e Simplifies modeling real-world systems (e.g., producer-consumer
problems).

@ Enables background processing and asynchronous tasks.

SDB Advanced Programming Multithreading

Challenges of Multithreading

o Deadlocks: Occur when two or more threads are waiting for each
other indefinitely.

@ Race Conditions: Data inconsistency due to unsynchronized access
to shared resources.

@ Thread Starvation: Lower priority threads are unable to execute.

o Complexity: Debugging and testing multithreaded applications is
challenging.

Solutions:
@ Use proper synchronization.
@ Avoid nested locks to prevent deadlocks.
@ Use ‘ReentrantlLock’ for advanced locking mechanisms.

o Prefer ‘ExecutorService' over manually managing threads.

SDB Advanced Programming Multithreading 46 / 55

Synchronization in Multithreading

Definition: Synchronization is the process of controlling access to shared
resources by multiple threads to prevent data inconsistency.
Types of Synchronization:

@ Synchronized Method: Locks the entire method.
@ Synchronized Block: Locks only a specific block of code.

@ Static Synchronization: Synchronizes static methods or blocks.

SDB Advanced Programming Multithreading 47 / 55

Example: Synchronized Method Using ‘Thread® Class

class Counter {
private int count = 0;
public synchronized void increment() { count++;}
public synchronized int getCount() { return count;}

class CounterThread extends Thread {
private Counter counter;

CounterThread (Counter counter) { this.counter = counter;}
public void run() {
for (int i = 0; i < 1000; i++) { counter.increment();}

}

public class Test {
public static void main(String[] args) {
Counter counter = new Counter();
CounterThread tl1 = new CounterThread(counter);
CounterThread t2 = new CounterThread(counter);

tl.start(); t2.start();
try { tl.join(); t2.join();}
catch (InterruptedException e) { e.printStackTrace();}

System.out.println (" Final count: " + counter.getCount());

Listing 25: Synchronized Method

SDB Advanced Programming Multithreading

Example: Synchronized Block Using ‘Runnable’ Interface

class Counter {
private int count = 0;
public void increment() {
synchronized (this) { count++;}

public int getCount() { return count;}

class CounterRunnable implements Runnable {
private Counter counter;
CounterRunnable(Counter counter) { this.counter = counter;}

public void run()
i =

{
for (int 0; i < 1000; i++) { counter.increment();}

public class Test {
public static void main(String[] args) {

Counter counter = new Counter();
Thread t1 = new Thread(new CounterRunnable(counter));
Thread t2 = new Thread(new CounterRunnable(counter));

tl.start(); t2.start();
try { tl.join(); t2.join();}
catch (InterruptedException e) { e.printStackTrace();}

System.out.println (" Final count: " + counter.getCount());

Listing 26: Synchronized Block

SDB Advanced Programming Multithreading

Handling Deadlocks

Definition: Deadlock occurs when two threads are waiting for each other
to release resources.

class Resource {
void methodl(Resource r) {
synchronized (this) {
System.out.printin (" Inside methodl”);
r.method2(this);

}

void method2(Resource r) {
synchronized (this) {
System.out.println (" Inside method2");

}

public class Test {
public static void main(String[] args) {
Resource rl new Resource();
Resource r2 new Resource();

Thread tl = new Thread (() —> rl.method1(r2));
= (

Thread t2 new Thread (() —> r2.method1(rl));
tl.start(); t2.start();
¥
}
Listing 27: Deadlock Example
SDB

Advanced Programming Multithreading

Inter-Thread Communication

Mechanism: Threads communicate using ‘wait()’, ‘notify()’, and
‘notifyAll()".

class Message {
private String content;
public synchronized void write(String message) {
this.content = message;
notify ();

public synchronized String read() {
try { wait();}

catch (InterruptedException e) { e.printStackTrace();}
return content;

}

public class Test {

public static void main(String[] args) {
Message message = new Message();

Thread writer

= new Thread (() —> message.write("Hello, World!"));
Thread reader =

new Thread (() —> System.out.println(message.read()));

reader.start(); writer.start();

Listing 28: Inter-Thread Communication

Advanced Programming Multithreading

Common Mistakes in Thread Programming |

class Counter {
private int count = 0;
public void increment() { count++;}
public int getCount() { return count;}

public class Test {
public static void main(String[] args) {

Counter counter = new Counter();

Thread tl = new Thread (() = {
for (int i = 0; i < 1000; i++) { counter.increment();}

3
Thread t2 = new Thread (() = {
for (int i = 0; i < 1000; i++) { counter.increment();}

3

tl.start(); t2.start();

try { tl.join(); t2.join();}
catch (InterruptedException e) { e.printStackTrace();}

System.out.println(” Final count (unsynchronized): " + counter.getCount());

Listing 29: Accessing Shared Resources Without Synchronization

SDB Advanced Programming Multithreading

Common Mistakes in Thread Programming Il

class Deadlock {
private final Object lockl = new Object();
private final Object lock2 = new Object();

public void taskl()
synchronized (lockl) { System.out.println(”Taskl acquired lockl”);
synchronized (lock2) { System.out.println(”Taskl acquired lock2");}

}
public void task2() {
synchronized (lock2) { System.out.printin(”Task2 acquired lock2");
synchronized (lockl) { System.out.println(”"Task2 acquired lockl”);}
}

}

public class Test {
public static void main(String[] args) {
Deadlock deadlock = new Deadlock();
Thread t1 = new Thread(deadlock ::taskl);
Thread t2 = new Thread(deadlock ::task2);

tl.start(); t2.start();

Listing 30: Deadlock Example

SDB Advanced Programming Multithreading

Best Practices for Multithreading

Minimize shared resources to reduce synchronization overhead.

Use thread-safe collections (e.g., ‘ConcurrentHashMap').

Prefer higher-level concurrency utilities like ‘ExecutorService' and
‘ForkJoinPool".

Avoid busy-waiting; use proper synchronization techniques.

Test extensively under different scenarios to detect issues early.

SDB Advanced Programming Multithreading 54 / 55

Best Practices for Synchronization

Minimize the scope of synchronization to reduce contention.

Avoid nested synchronization to prevent deadlocks.

Use higher-level concurrency utilities like ‘ReentrantLock’ and
‘ExecutorService'.

Prefer immutable objects to reduce synchronization needs.

(]

Always test for race conditions and deadlocks in multithreaded
applications.

SDB Advanced Programming Multithreading 55 / 55

Outline

O Appendix
@ Miscellaneous
@ Java Thread Class

Exercises for Students

1. Access Modifiers:

o Create a class with variables and methods using all access modifiers.
Test access from different packages.

2. Exception Handling:
@ Write a program to handle a ‘FileNotFoundException®.
@ Create a user-defined exception for validating passwords.

3. Multithreading:

@ Implement a program with two threads: one to print even numbers
and another to print odd numbers.

@ Demonstrate thread synchronization with a shared counter.

SDB Advanced Programming Appendix

Discussion Questions

@ What are the benefits of using synchronized methods in
multithreading?

@ How do custom exceptions improve program readability?

@ Compare the ‘Thread’ class and ‘Runnable’ interface for creating
threads.

SDB Advanced Programming Appendix 2 /24

Exception Hierarchy

Throwable

Exception

/N

RuntimeException [OException
NullPointerException

ArraylndexOutOfBoundsException

SDB Advanced Programming Appendix

3/

Thread Lifecycle Methods

start () - Begins execution of a thread.
run() - Contains thread logic (overridden).
sleep(ms) - Pauses thread execution.

join() - Waits for another thread to finish.

interrupt () - Stops a sleeping/waiting thread.

SDB Advanced Programming Appendix

Thread Control Methods

isAlive() - Checks if a thread is running.
setDaemon(true/false) - Marks a thread as a daemon.

setPriority(int) - Sets thread priority.

getPriority() - Retrieves thread priority.

SDB Advanced Programming Appendix

Static Methods in Thread Class

@ Thread.yield() - Hints that the current thread is willing to yield
execution.

@ Thread.currentThread() - Returns reference to currently executing
thread.

@ Thread.sleep(ms) - Puts the current thread to sleep for specified
milliseconds.

@ Thread.activeCount () - Returns number of active threads in
current thread's group.

@ Thread.holdsLock(obj) - Checks if the current thread holds the
lock on the specified object.

SDB Advanced Programming Appendix 6 /24

Example: Creating a Thread

class MyThread extends Thread {
public void run() {
System.out.println("Thread is running...");

}

public class Main {
public static void main(Stringl[] args) {
MyThread tl1 = new MyThread();
tl.start () ;

SDB Advanced Programming Appendix

Example: Using join()

class MyThread extends Thread {
public void run() {

for (int i = 0; i < 5; i++) {
System.out.println("Running: " + 1i);
try { Thread.sleep(1000); } catch (

InterruptedException e) {}

public class Main {

public static void main(String[] args) throws
InterruptedException {

MyThread t1 =
tl.start () ;
tl.join () ;

new MyThread();

System.out.println("Main thread finished");
}

Advanced Programming Appendix

Example: Interrupting a Thread

class MyThread extends Thread {
public void run() {
try {
Thread.sleep (5000) ;
System.out.println("Thread completed");
} catch (InterruptedException e) {
System.out.println("Thread was interrupted!")

>

public class Main {
public static void main(String[] args) {
MyThread t1 = new MyThread();
tl.start();
tl.interrupt () ;

SDB Advanced Programming Appendix 9 /24

Example: Using Static Methods in Thread Class

public class Main {
public static void main(String[] args) {
Thread t1 = new Thread(() -> {

System.out.println("Current Thread: " +
Thread.currentThread () .getName ());
System.out.println("Active Threads: " +

Thread.activeCount ());
DM
tl.start ();

SDB Advanced Programming Appendix

Example: Using setName() and getName()

class MyThread extends Thread {
public void run() {
System.out.println("Thread Name: " + getName());
}

public class Main {
public static void main(String[] args) {
MyThread t1 = new MyThread();
t1l.setName ("WorkerThread");
tl.start () ;

SDB Advanced Programming Appendix

Example: Using setPriority() and getPriority()

class MyThread extends Thread {
public void run() {
System.out.println("Thread Priority: " +
getPriority ());

}

public class Main {
public static void main(String[] args) {
MyThread t1 = new MyThread();
tl.setPriority (Thread.MAX_PRIORITY);
tl.start ();

SDB Advanced Programming Appendix

Example: Using Different Thread Constructors

class MyRunnable implements Runnable {
public void run() {
System.out.println("Runnable thread running...");

}

public class Main {
public static void main(String[] args) {
Thread t1 = new Thread(); // Default constructor
Thread t2 = new Thread(new MyRunnable()); //
Runnable constructor
Thread t3 = new Thread(new MyRunnable(),
NamedThread") ;

t2.start () ;
System.out.println("Thread 3 name: " + t3.getName

O);

SDB Advanced Programming Appendix

Introduction to Java Thread Synchronization

Why Synchronization?

@ Prevents data inconsistency due to concurrent access.

@ Ensures thread-safe operations on shared resources.
Synchronization Mechanisms:
wait(), notify(), notifyAll() — Object-level thread coordination.
@ synchronized methods and blocks — Locks at object level.

e static synchronized methods and blocks — Locks at class level.
@ Semaphore — Allows limited concurrent access.
@ ReadWriteLock — Optimized for read-heavy scenarios.

Exercise: Why do race conditions occur in multi-threaded applications?

SDB Advanced Programming Appendix

Using wait (), notify (), and notifyAll()

Concept:
@ wait() — Releases the lock and waits for notification.
@ notify () — Wakes up one waiting thread.
@ notifyAll() — Wakes up all waiting threads.

Example: Producer-Consumer Problem

class SharedResource {
private boolean available = false;
public synchronized void produce() throws InterruptedException {
while (available) wait();
System.out. println (" Producing...”);
available = true; notify();

public synchronized void consume() throws InterruptedException {
while (!available) wait();
System.out. println (" Consuming...");
available = false; notify ();
}
}

Exercise: Modify the above code to use notifyAl1() instead of
notify ().

SDB Advanced Programming Appendix

Synchronized Methods and Blocks

Synchronization Levels:
@ Synchronized Method: Locks the entire method.
@ Synchronized Block: Locks only a critical section.
Example: Synchronized Method

class Counter {

private int count = 0;
public synchronized void increment() {
count+-+;

}

Example: Synchronized Block

class Counter {
private int count = 0;
public void increment() {
synchronized (this) { count++;}
}

}

Exercise: When would you use a synchronized block instead of a
synchronized method?

SDB Advanced Programming Appendix

Producer-Consumer Problem using Synchronization

@ Uses wait() and notify() for inter-thread communication.
@ Producer generates data, Consumer consumes it.

@ Ensures proper synchronization.

SDB Advanced Programming Appendix

17/

Example: Producer-Consumer Problem

class SharedResource {
private int data;
private boolean available = false;

public synchronized void produce(int value) throws InterruptedException {
while (available) wait();

data = value;
available = true;
notify ();

public synchronized int consume() throws InterruptedException {
while (!available) wait();
available = false;
notify ();
return data;

SDB Advanced Programming Appendix

Using Semaphore for Synchronization

Concept:
@ Limits the number of concurrent threads accessing a resource.

Example: Semaphore with Limited Access

import java.util.concurrent.Semaphore;

class SharedResource {
private Semaphore semaphore = new Semaphore(2);

public void accessResource() throws InterruptedException {
semaphore. acquire () ;
System.out. printin(Thread.currentThread().getName() + " accessing resource

Thread.sleep (1000);
semaphore.release ();

Exercise: Modify the code to allow only one thread at a time.

SDB Advanced Programming Appendix

ReadWriteLock for Multi-Threaded Reads/Writes

Concept:
@ Read Lock: Multiple threads can read simultaneously.
@ Write Lock: Only one thread can write at a time.

import java.util.concurrent.locks.ReentrantReadWriteLock;

class SharedData {

private int data = 0;
private final ReentrantReadWriteLock lock = new ReentrantReadWriteLock();
public void readData() {

lock .readLock () .lock():

try {

System.out.println (" Reading Data: " + data);
} finally { lock.readLock().unlock(); }

public void writeData(int value) {
lock . writeLock () .lock();

try {
data = value;
System.out.println (" Writing Data: " + value);

} finally { lock.writeLock().unlock(); }

}

Exercise: Explain how ReadWriteLock improves performance in
read-heavy scenarios.

SDB Advanced Programming Appendix

Executor Framework

@ Provides thread pool management.
@ Uses ExecutorService to manage tasks.

o Efficient for handling multiple concurrent tasks.

import java.util.concurrent.x;

public class ExecutorExample {
public static void main(String[] args) {
ExecutorService executor = Executors.newFixedThreadPool(2);
executor.execute (() —> System.out.println("Task 1 running”));
executor.execute (() —> System.out.println(”"Task 2 running”));
executor.shutdown () ;

SDB Advanced Programming Appendix

Reentrant Locks

@ Alternative to synchronized blocks.

@ Allows reentrant behavior (a thread can re-acquire lock it already
holds).

@ Uses ReentrantLock from java.util.concurrent.locks.

import java.util.concurrent.locks.x*;

class Shared {
private final ReentrantLock lock = new ReentrantLock();

public void safeMethod () {
lock . lock ();
try {
System.out. printin(Thread.currentThread().getName() + " is executing”);
} finally {
lock . unlock () ;
}

SDB Advanced Programming Appendix

Nested Locks (Deadlock Scenario)

@ Deadlock occurs when two threads hold locks that the other needs.

@ Careful lock acquisition order prevents deadlocks.

class DeadlockExample {
private final Object lockl
private final Object lock2

new Object();
new Object();

public void methodl() {
synchronized (lockl) {
synchronized (lock2) {
System.out.println (" Thread 1 running”);

}

public void method2() {
synchronized (lock2) {
synchronized (lockl) {
System.out. println (" Thread 2 running”);

SDB Advanced Programming Appendix

ThreadGroup in Java

@ Manages multiple threads as a single unit.
@ Can set priority and handle uncaught exceptions.

@ Helps in security and resource management.

public class ThreadGroupExample {
public static void main(String[] args) {
ThreadGroup group = new ThreadGroup (" MyGroup”);
Thread tl = new Thread(group, () —> System.out.printin("Thread 1 running”));
Thread t2 = new Thread(group, () —> System.out.printlin("Thread 2 running”));

tl.start();
t2.start();
System.out.println (" Active Threads in group: " + group.activeCount());

SDB Advanced Programming Appendix

	Access Specifiers
	API in Java
	Java Packages
	Exception Handling
	Multithreading
	Appendix
	Appendix
	Miscellaneous
	Java Thread Class

