Advanced Programming (OOP)
Module 3: Advanced Features of OOP

SDB

SDB

Spring 2025

Advanced Programming

1/

Module 3: Topics

Inheritance: Using superclass and subclass.
Abstract Classes and Interfaces.

Copying and Cloning Objects.

Using Wrapper Classes and Streams.

SDB Advanced Programming

Polymorphism: Method overloading and overriding.

2/

Outline

© Inheritance in Java

What is Inheritance?

Definition: Inheritance is a mechanism in which one class (subclass)
derives properties and behaviors from another class (superclass).
Key Benefits:

@ Code Reusability: Reuse fields and methods of the parent class.

o Extensibility: Add new features to existing classes without modifying
them.

@ Polymorphism: Achieve dynamic method invocation.

SDB Advanced Programming Inheritance in Java 3/94

Real-World Usage of Inheritance

Example Scenario 1: Employee Management System
@ Superclass: 'Employee’
@ Subclasses: ‘Manager’, ‘Developer’, ‘Tester'

@ Shared Attributes: ‘name’, ‘id*, ‘department’

@ Specific Behaviors: ‘assignTask()' for Manager, ‘writeCode()" for
Developer.

Example Scenario 2: Vehicle Hierarchy
@ Superclass: ‘Vehicle'
@ Subclasses: ‘Car’, ‘Bike’, ‘Truck'
@ Shared Attributes: ‘speed’, ‘fuelCapacity’
@ Specific Behaviors: ‘loadCargo()’ for Truck, ‘ride()’ for Bike.

SDB Advanced Programming Inheritance in Java 4 /94

Types of Inheritance in Java

Supported Types:
@ Single Inheritance: One class inherits from another.

@ Multilevel Inheritance: A class inherits from a class that itself inherits
from another class.

@ Hierarchical Inheritance: Multiple classes inherit from a single
superclass.

Not Supported:

@ Multiple Inheritance: Java does not allow a class to inherit from more

than one class directly to avoid ambiguity caused by the diamond
problem.

Advanced Programming Inheritance in Java 5/ 94

Why Multiple Inheritance is Not Supported

The Diamond Problem:

@ Occurs when a class inherits from two classes that have a common
ancestor.

@ Leads to ambiguity: Which implementation of the shared method
should be used?

Solution in Java:

@ Use Interfaces: Multiple inheritance of type is achieved by
implementing multiple interfaces.

SDB Advanced Programming Inheritance in Java 6 /94

Single Inheritance Example

Definition: A class inherits from a single superclass.

class Animal {
void eat() {System.out.println("Animal eats food.");}

class Dog extends Animal {
void bark() {System.out.println("Dog barks.");}
}

public class Test {
public static void main(String[] args) {
Dog dog = new Dog();
dog.eat(); // Inherited method
dog.bark () ;

Listing 1: Single Inheritance

SDB Advanced Programming Inheritance in Java 7 /94

Multilevel Inheritance Example

Definition: A class inherits from a class that itself inherits from another
class.

class Animal {
void eat() {System.out.printin("Animal eats food.");}
}

class Mammal extends Animal {
void walk() {System.out.println(”Mammal walks.”);}
}

class Dog extends Mammal {
void bark() {System.out.println(”"Dog barks.");}
}

public class Test {
public static void main(String[] args) {
Dog dog = new Dog()
dog.eat();
dog.walk();
dog.bark();

Listing 2: Multilevel Inheritance

SDB Advanced Programming Inheritance in Java 8 /94

Hierarchical Inheritance Example

Definition: Multiple classes inherit from a single superclass.

class Animal {
void eat() {System.out.println(”Animal eats food.");}
}

class Dog extends Animal {
void bark() {System.out.println("Dog barks.”);}
}

class Cat extends Animal {
void meow() {System.out.println(”Cat meows.”);}
}

public class Test {
public static void main(String[] args) {
Dog dog = new Dog();
Cat cat = new Cat();

dog.eat();
dog. bark();
cat.eat();
cat.meow () ;
¥
}
Listing 3: Hierarchical Inheritance
SDB Advanced Programming Inheritance in Java 9 /94

Visualizing Inheritance

Animal

Dog
Single

Inheritance:

SDB

Animal

Dog
Multilevel Hierarchical
Inheritance: Inheritance:

Advanced Programming Inheritance in Java

10 / 94

Access Specifiers and Inheritance: Single Inheritance |

Single Inheritance:
@ Public: Inherited and accessible everywhere.

@ Protected: Inherited and accessible within the same package and
subclasses.

o Default: Inherited but accessible only within the same package.

@ Private: Not inherited or accessible.

SDB Advanced Programming Inheritance in Java 11 /94

Access Specifiers and Inheritance: Single Inheritance Il

Example:

class Parent {
public int publicVar = 10;
private int privateVar = 20;
protected int protectedVar = 30;
int defaultVar = 40;

}

class Child extends Parent {
void display () {
System.out. println(publicVar); // Accessible
// System.out.println(privateVar); // Not Accessible
System.out.println(protectedVar); // Accessible
System.out.printin(defaultVar); // Accessible (same package)

Listing 4: Single Inheritance Access

SDB Advanced Programming Inheritance in Java

Access Specifiers and Inheritance: Multilevel Inheritance |

Multilevel Inheritance:
@ Public: Inherited and accessible everywhere.

@ Protected: Inherited and accessible within the package and in
subclasses at all levels.

o Default: Accessible only within the package.

@ Private: Not inherited or accessible.

SDB Advanced Programming Inheritance in Java 13 /94

Access Specifiers and Inheritance: Multilevel Inheritance Il

Example:

class GrandParent {
public int publicVar = 10;
protected int protectedVar = 20;
int defaultVar = 30;
private int privateVar = 40;

}

class Parent extends GrandParent {

class Child extends Parent {
void display () {
System.out.println(publicVar); // Accessible
System.out.println(protectedVar); // Accessible
// System.out.printin(defaultVar); // Not Accessible (if in another package)
// System.out.println(privateVar); // Not Accessible

Listing 5: Multilevel Inheritance Access

SDB Advanced Programming Inheritance in Java

Access Specifiers and Inheritance: Hierarchical Inheritance |

Hierarchical Inheritance:
@ Public: Inherited and accessible everywhere.

@ Protected: Inherited and accessible within the package and in
subclasses.

o Default: Inherited but accessible only within the same package.

@ Private: Not inherited or accessible.

SDB Advanced Programming Inheritance in Java 15/ 94

Access Specifiers and Inheritance: Hierarchical Inheritance
1

Example:

class Parent {
public int publicVar = 10;
protected int protectedVar = 20;
int defaultVar = 30;
private int privateVar = 40;

class ChildA extends Parent {
void displayA () {
System.out. println(publicVar); // Accessible
System.out. println(protectedVar); // Accessible
System.out.printlin(defaultVar); // Accessible (same package)

class ChildB extends Parent {
void displayB () {
System.out.println(publicVar); // Accessible
System.out.println(protectedVar); // Accessible
// System.out.printlin(defaultVar);, // Not Accessible (if in another package)

Listing 6: Hierarchical Inheritance Access

SDB Advanced Programming Inheritance in Java

Constructors in Inheritance

Key Points:
@ A subclass constructor always calls the constructor of its superclass.

@ If no ‘super()" is explicitly called, the default (no-argument)
constructor of the superclass is invoked.

@ Parameterized constructors in the superclass must be explicitly called
using ‘super(parameters)’.

Importance:
@ Ensures proper initialization of inherited attributes.

@ Prevents uninitialized fields in the parent class.

SDB Advanced Programming Inheritance in Java 17 / 94

Using ‘super()‘ in Constructors

Example:

class Parent {
String name;

Parent(String name) {
this .name = name;
System.out. println(” Parent constructor called.”);

}

class Child extends Parent {
int age;

Child(String name, int age) {
super(name); // Call to superclass constructor
this.age = age;
System.out.println(” Child constructor called.”);

}

public class Test {
public static void main(String[] args) {
Child ¢ = new Child (" Alice”, 10);
// Output:
// Parent constructor called.
// Child constructor called.

Listing 7: Using super()

SDB Advanced Programming Inheritance in Java

Default Constructor and Inheritance

Behavior:

o If a superclass does not have a no-argument constructor, the subclass

must explicitly call a parameterized constructor.
@ Failure to do so results in a compile-time error.
Example:

class Parent {
int value;

Parent(int value) {
this.value = value;
}

class Child extends Parent {
Child (int value) {

super(value); // Must call superclass constructor

public class Test {
public static void main(String(]
Child ¢ = new Child (42);
System.out. println(”Value: "

args) {

+ c.value);

Listing 8: No-Argument Constructor Missing

Advanced Programming Inheritance in Java

19 / 94

Constructor Chaining in Inheritance |

Definition: A sequence of constructor calls across the inheritance

hierarchy.
Example:
class GrandParent {
GrandParent () {
System.out. println(” GrandParent constructor called.”);
}
class Parent extends GrandParent {
Parent () {
super(); // Calls GrandParent constructor
System.out.println (" Parent constructor called.”);
}
}
class Child extends Parent {
Child () {
super(); // Calls Parent constructor
System.out. println(” Child constructor called.”);
}
public class Test {
public static void main(String[] args) {
Child ¢ = new Child();

SDB Advanced Programming Inheritance in Java

Constructor Chaining in Inheritance Il

// Output:

// GrandParent constructor called.
// Parent constructor called.

// Child constructor called.

Listing 9: Constructor Chaining

SDB Advanced Programming Inheritance in Java

Best Practices: Constructors and Inheritance

o Always use ‘super()' explicitly when initializing parent class attributes.
@ Keep constructors simple to ensure maintainability.

@ Avoid calling overridable methods within constructors to prevent
unexpected behavior.

@ Ensure consistent initialization of attributes in both parent and child
classes.

SDB Advanced Programming Inheritance in Java 22 /94

Common Mistakes and Issues in Inheritance |

1. Incorrect Use of Access Specifiers:

@ Declaring fields as ‘private’ in the parent class makes them
inaccessible to child classes.

@ Solution: Use ‘protected’ for fields meant to be inherited.

Example:

class Parent {
private int value = 10; // Not accessible in Child

class Child extends Parent {
void showValue() {
// System.out.printin(value); // Compile—time error

Listing 10: Access Specifier Issue

SDB Advanced Programming Inheritance in Java

Common Mistakes and Issues in Inheritance |l

2. Overusing Inheritance:
@ Inheriting from a class unnecessarily, leading to a fragile hierarchy.

@ Solution: Use composition instead of inheritance when the
relationship is not "is-a".

Example:

class Engine {
void start() {
System.out. println(”Engine starts”);

}

// Instead of:
class Car extends Engine { }
// Prefer composition:
class Car {
private Engine engine = new Engine();
void startCar() {
engine.start();

Listing 11: Overusing Inheritance

SDB Advanced Programming Inheritance in Java

Common Mistakes and Issues in Inheritance Il

3. Constructor Issues:
@ Forgetting to call the superclass constructor explicitly when needed.
@ Solution: Use ‘super()' to initialize parent class fields.

Example:

class Parent {
String name;
Parent(String name) {
this .name = name;
}

}

class Child extends Parent {
Child(String name) {
super(name); // Explicit call to superclass constructor
}

}

Listing 12: Constructor Issue

SDB Advanced Programming Inheritance in Java

Common Mistakes and Issues in Inheritance |V

4. Overriding Mistakes:
@ Incorrectly overriding methods, leading to bugs or loss of functionality.
@ Solution: Use the ‘@Override’ annotation to ensure proper overriding.

Example:

class Parent {
void show () {
System.out. println(” Parent class method”);

}
class Child extends Parent {
Q@Override
void show() {
System.out.println(” Child class method”);
}
}

Listing 13: Overriding Mistake

SDB Advanced Programming Inheritance in Java

Common Mistakes and Issues in Inheritance V

5. Diamond Problem:
@ Attempting multiple inheritance with classes, causing ambiguity.
@ Solution: Use interfaces to achieve multiple inheritance of type.

Example:

class A {
void show() {System.out.println(”Class A method”);}

class B extends A {
void show() {System.out.println(”Class B method”);}

// Java prevents this scenario:
// class C extends A, B { }

interface 11 {void show();}
interface 12 {void show();}

class C implements 11, 12 {
public void show() {
System.out. println(” Resolved in Class C");

Listing 14: Diamond Problem Example

SDB Advanced Programming Inheritance in Java

Common Mistakes and Issues in Inheritance VI

6. Tight Coupling:
@ Child classes tightly coupled with parent classes, making maintenance

difficult.
@ Solution: Favor loose coupling by using interfaces or abstract classes
for flexibility.
Example:
class A {

void service() {System.out.println(”"Service from A");}

class B extends A {
void useService() {service(); // Tight coupling}

// Use an interface instead for loose coupling
interface Service {void perform();}
class C implements Service {
public void perform() {
System.out. println(” Service from C");

Listing 15: Tight Coupling
SDB Advanced Programming Inheritance in Java

Common Mistakes and Issues in Inheritance VII

7. Unintended Behavior:

@ Forgetting to account for inherited methods, leading to unexpected
behaviors.

@ Solution: Carefully design parent classes with inheritance in mind.

Example:

class Parent {
void calculate() {System.out.println("Parent calculation”);}

class Child extends Parent {
void calculate() {System.out.println (" Child—specific calculation”);}

class Test {
public static void main(String[] args) {
Parent p = new Child(); // Unintended method execution
p.calculate();
}
}

Listing 16: Unintended Behavior

SDB Advanced Programming Inheritance in Java

Common Mistakes and Issues in Inheritance VIII

8. Fragile Base Class Problem:
@ Modifying a base class breaks the functionality of child classes.
@ Solution: Design base classes to be stable and avoid frequent changes.

Example:

class Base {
void display () {System.out.printin(”"Base display”);}

class Derived extends Base {
void display () {System.out.printin (" Derived display”);}

class Test {
public static void main(String[] args) {
Base obj = new Derived();
obj.display ();

}

// Changing Base class implementation may impact Derived class

Listing 17: Fragile Base Class

SDB Advanced Programming Inheritance in Java 30 /94

Java Annotations |

Definition: Annotations provide metadata about the code, used to give
instructions to the compiler or runtime.
Common Annotations:

@ @Override: Indicates a method overrides a superclass method.
@ @Deprecated: Marks a method or class as deprecated.
@ @SuppressWarnings: Suppresses specific compiler warnings.

@ @Functionallnterface: Marks an interface as a functional interface.

SDB Advanced Programming Inheritance in Java 31/94

Java Annotations Il

Example:

class Parent {
void show() {

class Child extends Parent {
Q@Override
void show () {
System.out.println("Child method");
}

System.out.println("Parent method");

Listing 18: Using Annotations

SDB Advanced Programming Inheritance in Java

Outline

© Polymorphism
@ Overloading
@ Overriding

Introduction to Polymorphism in Java

Definition: Polymorphism allows objects to take many forms, enabling a
single interface to be used with different underlying types.
Key Concepts:

@ Compile-Time Polymorphism: Achieved through method
overloading.

@ Runtime Polymorphism: Achieved through method overriding.
@ Promotes code flexibility and reusability.
Real-World Analogy:

@ A single word like "run” can have different meanings based on
context (e.g., a person running, a program running).

Advanced Programming Polymorphism 33 /94

Supported Types of Polymorphism

Definition: Polymorphism allows methods or objects to take many forms.
Types Supported in Java:

@ Compile-Time Polymorphism: Achieved via method overloading.
@ Runtime Polymorphism: Achieved via method overriding.
Not Supported:

@ Operator Overloading: Not supported to maintain code simplicity
(e.g., unlike C++).

SDB Advanced Programming Polymorphism 34 /94

Compile-Time Polymorphism Example

Definition: Resolved at compile time using method overloading.

class Calculator {
int add(int a, int b) {
return a + b;
}

double add(double a, double b) {
return a + b;

}

public class Test {
public static void main(String[] args) {
Calculator calc = new Calculator();
System.out.println(calc.add(5, 10)); // Calls int version
System.out.printin(calc.add(5.5, 2.2)); // Calls double version

Listing 19: Method Overloading

SDB Advanced Programming Polymorphism

Runtime Polymorphism Example

Definition: Resolved at runtime using method overriding.

class Animal {
void speak() {
System.out.println(”Animal speaks.”);

}
class Dog extends Animal {
Q@Override
void speak() {
System.out. println(”Dog barks.");
¥
}

public class Test {
public static void main(String[] args) {
Animal animal = new Dog(); // Upcasting
animal.speak(); // Calls Dog's speak method

Listing 20: Method Overriding

SDB Advanced Programming Polymorphism

Polymorphism: Method Overloading

Definition: Polymorphism allows methods to perform different tasks
based on the parameters passed.
Advantages:
@ Simplifies code by allowing multiple methods with the same name.
@ Enhances readability and reusability.
Explanation: Method overloading occurs when two or more methods in
the same class share the same name but have different parameters (type,

number, or both). This enables the same method name to perform
different tasks depending on the arguments passed.

SDB Advanced Programming Polymorphism 37 /94

Overloading in Java

Definition: Overloading allows multiple methods in the same class to
have the same name but different parameter lists.
Key Characteristics:

@ Methods must differ in the number, type, or order of parameters.
@ Return type alone cannot differentiate overloaded methods.

@ Provides compile-time polymorphism.

SDB Advanced Programming Polymorphism 38 /94

Method Overloading Example

Example:

class Calculator {
// Method to add two integers
int add(int a, int b) {
return a + b;

}

// Method to add three integers

int add(int a, int b, int c) {
return a + b + c;

¥

// Method to add two doubles

double add(double a, double b) {
return a + b;

public class Test {
public static void main(String[] args) {
Calculator calc = new Calculator();
System.out.printin(calc.add(2, 3)); // Calls add(int, int)
System.out.printin(calc.add(2, 3, 4)); // Calls add(int, int, int)
System.out.printin(calc.add (2.5, 3.5)); // Calls add(double, double)

Listing 21: Method Overloading

SDB Advanced Programming Polymorphism

Constructor Overloading

Definition: Overloading constructors allows the creation of objects with
different initializations.
Example:

class Box {
double width, height, depth;
// Default constructor
Box() { width = height = depth = 0;}
// Parameterized constructor
Box(double w, double h, double d) {
width = w; height = h; depth = d;

¥
double volume() { return width * height * depth;}

}

public class Test {

public static void main(String[] args) {
Box boxl = new Box();
Box box2 = new Box(2, 3, 4);
System.out. println(”Volume of boxl: " + boxl.volume());
System.out.println(”Volume of box2: " + box2.volume());

Listing 22: Constructor Overloading

SDB Advanced Programming Polymorphism

Rules for Method Overloading

@ Methods must have the same name but different parameter lists.
@ Parameter lists can differ in:

o Number of parameters.
e Type of parameters.
o Order of parameters (if types are different).

@ Cannot overload methods by return type alone.

SDB Advanced Programming Polymorphism

Common Mistakes in Overloading

1. Confusion with Overriding:
@ Overloading occurs within the same class, whereas overriding occurs
between parent and child classes.
2. Ambiguity Errors:

o If two overloaded methods match equally well for a call, the compiler
throws an error.

Example:

class Example {
void show(int a, float b) { System.out.println(”"int—float version”);}
void show(float a, int b) { System.out.println(”float—int version”);}

public class Test {
public static void main(String[] args) {
Example ex = new Example();
// ex.show(10, 10); // Ambiguity: int matches both
ex.show(float (10), 10) // Outputs float—int version

Listing 23: Ambiguity in Overloading

SDB Advanced Programming Polymorphism

Polymorphism: Method Overriding

Definition: Subclasses provide specific implementations of a method
defined in the superclass.
Advantages:

@ Enables dynamic method invocation at runtime.
@ Promotes code flexibility and extensibility.

Explanation: Method overriding occurs when a subclass provides a
specific implementation for a method already defined in its superclass.
The overriding method must have the same name, return type, and
parameters as the method in the superclass.

SDB Advanced Programming Polymorphism 43 /94

Method Overriding in Java

Definition: Method overriding allows a subclass to provide a specific
implementation of a method already defined in its superclass.
Key Characteristics:

@ The method in the subclass must have the same name, return type,
and parameters as in the superclass.

@ Used to achieve runtime polymorphism.

@ The overridden method in the superclass must not be declared as
‘private’ or ‘final’.

Advanced Programming Polymorphism 44 / 94

Example: Method Overriding

Example:

class Animal {
void sound() {
System.out. println(”Animal makes a sound”);

}
class Dog extends Animal {
Q@Override
void sound() {
System.out. println(”"Dog barks”);
¥
}

public class Test {
public static void main(String[] args) {
Animal myAnimal = new Dog(); // Polymorphism
myAnimal.sound(); // Output: Dog barks

Listing 24: Method Overriding

SDB Advanced Programming Polymorphism

Rules for Method Overriding

@ The method must have the same name, parameter list, and return
type as in the superclass.

@ The method in the subclass cannot have a more restrictive access
modifier than the method in the superclass (e.g., a ‘protected’
method in the superclass cannot be overridden as ‘private’).

@ The ‘@Override’ annotation is optional but highly recommended to
avoid mistakes.

@ Static methods cannot be overridden (they are hidden instead).

@ Constructors cannot be overridden.

SDB Advanced Programming Polymorphism 46 / 94

Common Mistakes in Method Overriding |

1. Incorrect Method Signature:

@ If the method signature does not match exactly, it results in method
overloading instead of overriding.

Example:

class Parent {
void display () {
System.out.println (" Parent display”);

}

class Child extends Parent {
void display(int value)
System.out. println(

// Overloading , not overriding

{
" Child display with value: " + value);

Listing 25: Incorrect Method Signature

SDB Advanced Programming Polymorphism

Common Mistakes in Method Overriding Il

2. Missing ‘OQOverride’:

@ Not using ‘@Override’ may lead to silent errors if the method
signature does not match.

3. More Restrictive Access Modifier:

@ Overridden methods cannot have a more restrictive access level.
Example:

class Parent {
protected void display () {
System.out. println (" Parent display”);
}

}

class Child extends Parent {

// void display () { // Error: Cannot reduce access level
// System.out. printin (" Child display”);

//}

Listing 26: Access Modifier Issue

Advanced Programming Polymorphism 48 / 94

Common Mistakes in Method Overriding Il

4. Overriding Static Methods:

@ Static methods are not overridden; they are hidden.

Example:

class Parent {
static void display() {
System.out.println(” Parent static display”);

}

class Child extends Parent {
static void display () {
System.out. println(” Child static display”);
}

}

public class Test {
public static void main(String[] args) {
Parent.display(); // Output: Parent static display
Child . display(); // Output: Child static display

Listing 27: Static Method Hiding

SDB Advanced Programming Polymorphism

49 / 04

Outline

© Abstract Class

Introduction to Abstract Classes

Definition: An abstract class in Java is a class that cannot be
instantiated and is designed to be extended by subclasses.
Key Characteristics:

@ Can include both abstract methods (without implementation) and
concrete methods (with implementation).

@ Provides a blueprint for subclasses.
@ Declared using the ‘abstract’ keyword.
@ Reduces code duplication by allowing shared functionality.

Explanation: An abstract class provides a common base for related
classes. Subclasses must implement abstract methods, while they can
inherit concrete methods directly.

Use Case: Define a common interface or shared behavior across related
classes.

SDB Advanced Programming Abstract Class 50 / 94

Abstract Class Syntax

Syntax:

abstract class Shape
abstract void draw(); // Abstract method

public void description () {
System.out. println (" This is a shape.”);

}
}
class Circle extends Shape {
Q@Override
void draw () {
System.out.println (" Drawing a circle.”);
}

public class Test {
public static void main(String[] args) {
Shape s = new Circle();
s.description ();
s.draw () ;

Listing 28: Abstract Class Example

SDB Advanced Programming Abstract Class

Abstract Class Common Queries

Can an Abstract Class have Static Methods?

@ Yes, an abstract class can have static methods.

@ Static methods belong to the class, not instances of the class.
Can an Abstract Class have a Constructor?

@ Yes, an abstract class can have a constructor.

@ The constructor is called when an instance of a subclass is created.
Can an Abstract Class have Nested Classes?

@ Yes, an abstract class can have nested classes.

@ Nested classes are inner classes that are defined inside another class.

SDB Advanced Programming Abstract Class

Abstract Class vs Interface

Comparison:
Feature Abstract Class Interface
Methods Both abstract and concrete Abstract (default) and default

methods (Java 8+)

Multiple Inheritance

Single inheritance

Can implement multiple inter-
faces

Access Modifiers

Can have any access modifier

Methods are public by default

Fields

Can include non-static and
static fields

Only static final constants

Constructors

Allowed

Not Allowed

Advanced Programming Abstract Class

53 / 04

Abstract Classes: Practical Example

Scenario: Payment System
Abstract Class: Provides a template for different payment methods.

abstract class Payment {
abstract void processPayment();

void paymentDetails() {
System.out.println(” Processing payment details..."”);

}

class CreditCardPayment extends Payment {
void processPayment() {
System.out.println (" Processing credit card payment”);
}

class PayPalPayment extends Payment {
void processPayment() {
System.out. println (" Processing PayPal payment”);

Listing 29: Payment Example

SDB Advanced Programming Abstract Class

Advanced Example: Abstract Class with Fields and
Constructor

abstract class Animal {
String name;

Animal(String name) { this.name = name;}
abstract void sound();
public void eat() { System.out.println(name + " is eating.”);}

}

class Dog extends Animal {
Dog(String name) { super(name);}

Q@Override
void sound() { System.out.printin(name + " barks.”);}

}

public class Test {
public static void main(String[] args) {
Animal a = new Dog(” Buddy");
a.eat();
a.sound();

}

Listing 30: Abstract Class with Constructor

SDB Advanced Programming Abstract Class

When to Use Abstract Classes

Scenarios:
@ When common behavior or structure needs to be shared across
related classes.
@ When you want to partially implement functionality and enforce
subclasses to provide specific implementations.
@ When a class should not be instantiated on its own but serves as a
base class.

abstract class Vehicle {

abstract void start();

public void stop() { System.out.println(”"Vehicle stopped.”);}
}
class Car extends Vehicle {

@Override

void start() { System.out.printin("Car is starting.”);}

class Bike extends Vehicle {
@Override
void start() { System.out.println("Bike is starting.”);}

Listing 31: Abstract Class for Vehicles
SDB Advanced Programming Abstract Class

Advantages and Disadvantages of Abstract Classes

Advantages:
@ Provides a clear contract for subclasses.
@ Allows code reuse through concrete methods.
°

Encapsulates shared behavior and state.

Supports single inheritance while maintaining flexibility.
Disadvantages:

@ Does not support multiple inheritance.

@ Can become rigid if not designed properly.

@ More restrictive compared to interfaces for flexibility.

SDB Advanced Programming Abstract Class 57 / 94

Common Mistakes with Abstract Classes

1. Instantiating Abstract Classes:

abstract class Example {}

public class Test {
public static void main(String[] args) {
// Example obj = new Example(); // Error: Cannot instantiate
}

2. Forgetting to Implement Abstract Methods:

abstract class Parent {
abstract void display();

class Child extends Parent {
// Error: Child must implement abstract method

SDB Advanced Programming Abstract Class

Best Practices for Abstract Classes

Use abstract classes for shared behavior and inheritance.
Avoid making an abstract class overly specific.

Use interfaces if multiple inheritance is required.

Document the purpose of each abstract method.

SDB Advanced Programming Abstract Class

Outline

© Interfaces

Introduction to Interfaces in Java

Definition: An interface in Java is a blueprint for a class that defines a set
of methods that the implementing class must provide.
Key Characteristics:

@ Declared using the ‘interface’ keyword.

e All variables (properties) are static, final, public, and initialized.
@ All methods are implicitly ‘abstract’ and ‘public' (before Java 8).
@ From Java 8 onwards, can include default and static methods.

@ Supports multiple inheritance through implementation.

@ Ensures standardization across implementing classes.

Explanation: An interface contains only method declarations (abstract
methods) and static or final fields. Implementing classes must provide
functionality for all declared methods.

Use Case: Define a contract for classes without enforcing a specific
implementation hierarchy.

SDB Advanced Programming Interfaces 60 / 94

Basic Syntax of an Interface

Syntax:

interface Animal {
void eat();
void sleep();

}

class Dog implements Animal {
public void eat() {
System.out. println(”"Dog is eating.");

public void sleep() {
System.out.println(”"Dog is sleeping.”);
¥

}

public class Test {
public static void main(String[] args) {
Animal dog = new Dog();
dog.eat();
dog.sleep();

SDB Advanced Programming Interfaces

Interfaces vs Abstract Classes

Comparison:
Feature Interface Abstract Class
Methods Abstract, default, static Abstract and concrete
Fields ‘public static final Any type (static, instance)
Inheritance Multiple inheritance Single inheritance
Constructors Not allowed Allowed
Default Methods Allowed (Java 8+) Allowed

Multiple Implementa-
tions

Can implement multiple inter-

faces

Cannot extend multiple abstract
classes

Advanced Programming

Interfaces

Abstract Class vs Interface

Key Differences:
@ Abstract classes can have state, interfaces cannot.
@ Abstract classes can have protected methods, interfaces cannot.

@ A class can implement multiple interfaces, but extend only one
abstract class.

Abstract Class ‘ ’ Interface

extends Implements

’ Concrete Class ‘

SDB Advanced Programming Interfaces 63 / 94

Interfaces: Practical Example

Scenario: Multiple Behaviors for Robots
Interface: Defines specific behaviors a robot must implement.

interface Walkable {

void walk();

}

interface Talkable {
void talk();

}

class Robot implements Walkable, Talkable {
public void walk() {

System.out. println (" Robot walking...");
public void talk() {
System.out.println (" Robot talking...”);
}
}
Listing 32: Robot Example
SDB

Advanced Programming Interfaces 64 / 94

Advanced Example: Interface Extending Another Interface

Example:

interface Animal {
void eat();
}

interface Mammal extends Animal {
void giveBirth();
}

class Dolphin implements Mammal {
public void eat() {
System.out. println (" Dolphin is eating fish.");

¥
public void giveBirth () {
System.out.println (" Dolphin gives birth to live young.”);

Listing 33: Extending Interfaces

SDB Advanced Programming Interfaces 65 / 94

Common Mistakes with Interfaces

1. Forgetting ‘public’ on Methods:

interface Example {
// void method(); // Error: Method is not public
public void method();

}

Listing 34: Access Modifier Error

2. Attempting to Instantiate an Interface:

interface Animal {}
public class Test {

public static void main(String[] args) {
// Animal a = new Animal(); // Error: Cannot instantiate
¥

}

Listing 35: Instantiation Error

SDB Advanced Programming Interfaces 66 / 94

When to Use Interfaces

Scenarios:
@ When you need to define a contract for unrelated classes.
@ For achieving multiple inheritance.
@ When sharing constants across classes.

@ To ensure loose coupling and flexibility in design.

SDB Advanced Programming Interfaces 67 / 94

Advantages and Disadvantages of Interfaces

Advantages:
@ Promotes flexibility and modular design.
@ Enables multiple inheritance.
@ Provides a mechanism for achieving loose coupling.

Standardizes behavior across classes.

Disadvantages:

@ Lack of implementation can lead to redundant code.

@ Can make the code harder to follow if overused.

@ Limited to ‘public static final® fields.

SDB Advanced Programming Interfaces

68 / 94

Best Practices for Interfaces

Use interfaces for defining contracts and APlIs.

Prefer interfaces over abstract classes when multiple inheritance is
needed.

Avoid adding too many default methods to an interface.

Use meaningful names for interfaces (e.g., ‘Runnable’, ‘Comparable’).

Document the purpose of each interface and its methods.

SDB Advanced Programming Interfaces 69 / 94

Outline

© Cloning

The ‘Object’ Class in Java

Definition: The ‘Object’ class is the root class of the Java class hierarchy.
Every class in Java implicitly extends this class.
Key Methods Provided by ‘Object’:

@ ‘toString()‘: Returns a string representation of the object.

e ‘equals(Object obj)‘: Compares the object with another for equality.
o ‘hashCode()‘: Returns a hash code value for the object.

o ‘getClass()‘: Returns the runtime class of the object.
°

‘clone()‘: Creates a copy of the object (if the class implements
‘Cloneable’).

o ‘finalize()*: Invoked by the garbage collector before an object is
destroyed.

‘wait()*, ‘notify()*, ‘notifyAll()‘: Used for thread communication.

SDB Advanced Programming Cloning 70 / 94

Example: Using ‘toString()‘ and ‘equals()’

Example:

class Example {
int id; String name;
Example(int id, String name) {
this.id = id;
this .name = name;

}
@Override

public String toString() {
return "Example{id=" + id + ", name='" + name + "'}";

Q@Override
public boolean equals(Object obj) {
if (this = obj) return true;
if (obj = null || getClass() != obj.getClass()) return false;
Example example = (Example) obj;
return id = example.id && name.equals(example.name);
¥

public class Test {

public static void main(String[] args) {
Example el new Example(1l, " Alice”);
Example e2 = new Example(1, " Alice”

System.out.printin(el); // Outputs: Example{id=1, name='Alice '}
System.out.printin(el.equals(e2)); // Outputs: true

Listing 36: Overriding Object Methods

SDB Advanced Programming Cloning

Cloning Objects |

Definition: Cloning creates a copy of an object.
Advantages:

@ Useful for creating object backups.
@ Reduces the overhead of creating new instances from scratch.

Explanation: Cloning is achieved by implementing the ‘Cloneable’
interface and overriding the ‘clone()’ method from the ‘Object’ class. This
creates a shallow copy of the object.

SDB Advanced Programming Cloning 72/ 94

Cloning Objects Il

Example:

class Student implements Cloneable {
String name;
int rollINo;
Student(String name, int rollNo) {

this .name = name;
this.rolINo = rollNo;
¥
Q@Override

protected Object clone() throws CloneNotSupportedException {
return super.clone();
}

public class Test {
public static void main(String[] args) throws CloneNotSupportedException {
Student sl = new Student(” Alice”, 101);
Student s2 = (Student) sl.clone();
System.out.printin(s2.name + " " + s2.rolINo);

Listing 37: Cloning Example

SDB Advanced Programming Cloning

Best Practices: Working with ‘Object’ Methods

@ Always override ‘toString()' to provide meaningful string
representations of your objects.

e Implement ‘equals()’ and ‘hashCode()’ together to ensure consistency
when using objects in collections.

@ Use ‘getClass()' to implement type-specific logic dynamically.

@ Be cautious when overriding ‘clone()* as it requires implementing the
‘Cloneable’ interface.

SDB Advanced Programming Cloning

Outline

@ Copying Objects

Shallow Copy vs. Deep Copy in Java

Shallow Copy:

@ Copies the object’s fields but not the objects referenced by those
fields.

@ Changes to the referenced objects affect both the original and the
copied object.

e Typically achieved using ‘Object.clone()".
Deep Copy:
o Creates a new object and recursively copies all objects referenced by
the fields.

@ Changes to the referenced objects do not affect the original or vice
versa.

@ Requires explicit implementation.

SDB Advanced Programming Copying Objects 75/ 94

Example: Shallow Copy

Example:

class Address {
String city;
Address(String city) {
this.city = city;
}

class Person implements Cloneable {
String name; Address address;
Person(String name, Address address) {
this .name = name;
this.address = address;

@Override protected Object clone() throws CloneNotSupportedException {
return super.clone(); // Shallow copy

}

public class Test {
public static void main(String[] args) throws CloneNotSupportedException {
Address addr = new Address(”"New York”);

Person pl = new Person (" Alice”, addr);
Person p2 = (Person) pl.clone();
p2.address.city = "San Francisco”;

System.out.printin(pl.address.city); // Outputs: San Francisco

Listing 38: Shallow Copy

SDB Advanced Programming Copying Objects

Example: Deep Copy

Example:

class Address {
String city;
Address(String city) { this.city = city;
@Override protected Object clone() throws CloneNotSupportedException {
return new Address(this.city);

class Person implements Cloneable {

String name; Address address;
Person(String name, Address address) { this.name = name; this.address = address;
@Override protected Object clone() throws CloneNotSupportedException {

Person cloned = (Person) super.clone();

cloned.address = (Address) this.address.clone(); // Deep copy
return cloned;

}

public class Test {
public static void main(String[] args) throws CloneNotSupportedException {
Address addr = new Address(”New York”);

Person pl = new Person (" Alice”, addr);
Person p2 = (Person) pl.clone();
p2.address.city = "San Francisco”;

System.out. println(pl.address.city); // Outputs: New York

}

Listing 39: Deep Copy

SDB Advanced Programming Copying Objects

Cloning: ‘Cloneable’ vs. Copy Constructor

Using ‘Cloneable‘:
@ Provides a shallow copy by default.

@ Requires implementing the ‘Cloneable’ interface and overriding
‘clone()".

@ May require deep copying for complex objects.
Using Copy Constructor:

o Explicitly defines how to copy fields and objects.

@ More control over the copying process.

o Easier to implement deep copies.

SDB Advanced Programming Copying Objects 78 / 94

Example: Cloning with Copy Constructor

Example:

class Address {
String city;
Address(String city) {this.city = city;}
Address (Address other) {this.city = other.city;}

}

class Person {
String name; Address address;
Person(String name, Address address) {
this.name = name;
this.address = new Address(address); // Deep copy

Person(Person other) {
this.name = other.name;
this.address = new Address(other.address); // Deep copy

}

public class Test {
public static void main(String[] args) {
Address addr = new Address(”"New York”);

Person pl = new Person (" Alice”, addr);
Person p2 = new Person(pl); // Copy constructor
p2.address.city = "San Francisco”;

System.out. println(pl.address.city); // Outputs: New York

Listing 40: Copy Constructor

SDB Advanced Programming Copying Objects

Advantages and Disadvantages: ‘Cloneable’ vs
Constructor |

Advantages of ‘Cloneable’:
@ Built-in mechanism for object cloning.
@ Provides a default shallow copy implementation.
@ Supports cloning of arrays directly.
Disadvantages of ‘Cloneable’:

@ Requires handling ‘CloneNotSupportedException’.

@ Deep copying needs manual implementation for non-pri

. Copy

mitive fields.

@ Potentially violates encapsulation by accessing private fields.

Advanced Programming Copying Objects

80 / 94

Advantages and Disadvantages: ‘Cloneable’ vs. Copy
Constructor Il

Advantages of Copy Constructor:
@ Full control over the copying process.
@ Can easily implement deep copies.

@ Avoids the pitfalls of ‘Cloneable’ (e.g., exception handling).
Disadvantages of Copy Constructor:

@ Requires explicit implementation for each class.
@ Does not support polymorphic copying automatically.

@ More verbose compared to ‘Cloneable’ for simple cases.

Advanced Programming Copying Objects 81 /94

Outline

0 Wrapper Class

Introduction to Wrapper Classes in Java

Definition: Wrapper classes provide an object representation for primitive
data types in Java.
Primitive Types and Their Wrappers:

o ‘byte’ - '‘Byte’

@ ‘short' - ‘Short'

@ ‘int' - ‘Integer’

@ ‘long’ - ‘Long’

o ‘float’ - ‘Float’

@ ‘double’ - ‘Double’
@ ‘char' - ‘Character’
@ ‘boolean’ - ‘Boolean’

SDB Advanced Programming Werapper Class 82 /94

Examples: Using Wrapper Classes

Example: Autoboxing and Unboxing

public class WrapperExample {
public static void main(String[] args) {
// Autobozing: Primitive to Wrapper
Integer intWrapper = 10;

// Unbozing: Wrapper to Primitive

int intValue = intWrapper;
System.out.println("Wrapper: " + intWrapper);
System.out.println("Primitive: " + intValue);

Listing 41: Autoboxing and Unboxing

SDB Advanced Programming Werapper Class

Advanced Usage: Wrapper Classes

Example: Conversion and Utilities

public class WrapperUtilities {
public static void main(String[] args) {
// Parsing Strings to Primitives
int parsedInt = Integer.parselnt("123");
System.out.println("Parsed Integer: " + parsedInt

)

// Converting to Binary and Hezadecimal Strings
String binary = Integer.toBinaryString(10);
String hex = Integer.toHexString(255);
System.out.println("Binary: " + binary);
System.out.println("Hexadecimal: " + hex);

Listing 42: Wrapper Utilities

SDB Advanced Programming Werapper Class

When to Use Wrapper Classes

When working with collections (e.g., ‘ArrayList’, ‘HashMap') that
require objects.

@ To leverage utility methods (e.g., ‘Integer.parselnt()" for
string-to-integer conversion).
@ For null values to represent "no value” (not possible with primitives).

@ When working with frameworks that require objects (e.g., Java
Streams, Reflection APIs).

For type conversions and string representations of numbers.

SDB Advanced Programming Werapper Class 85 /94

Advantages and Disadvantages of Wrapper Classes

Advantages:

@ Enable the use of primitives in collections and frameworks.

@ Provide utility methods for type conversion and operations.

@ Allow representation of null for missing or optional values.

@ Support conversions to various formats (binary, hex, etc.).
Disadvantages:

o Additional memory overhead compared to primitives.

@ Autoboxing and unboxing may lead to performance issues in loops.

@ Risk of ‘NullPointerException® if a null wrapper is unboxed.

@ Increased complexity for developers unfamiliar with the nuances of
wrappers.

SDB Advanced Programming Werapper Class 86 / 94

Best Practices for Wrapper Classes

Prefer primitives over wrappers for performance-critical code.
Use ‘Optional’ for nullable values instead of wrappers.
Minimize autoboxing/unboxing in performance-sensitive scenarios.

Use utility methods provided by wrapper classes for type conversion.

Avoid unnecessary conversions between primitives and wrappers.

SDB Advanced Programming Werapper Class

Outline

© Streams

Introduction to Java Streams

Definition: Java Streams are a part of the Java 8 Stream API that enable

functional-style operations on collections and sequences of data.
Key Features:

@ Declarative programming for data processing.
@ Supports operations like ‘filter’, ‘map’, ‘reduce’, ‘sorted’, etc.

o Can be sequential or parallel for better performance.

SDB

Advanced Programming Streams 88 /94

Types of Streams

@ Stream: Handles obj

ects.

o IntStream, LongStream, DoubleStream: Handle primitives to
avoid boxing overhead.

Example:

import java.util.stream.x;

public class StreamExample {
public static void main(
Stream<Integer> obje
IntStream intStream

String [] args) {
ctStream = Stream.of (1, 2,

= IntStream.of (1, 2, 3, 4);

3,

4);

Listing 43: Creating Streams

SDB

Advanced Programming Streams

89 / 04

Examples of Stream Operations

Example: Filtering and Mapping

import java.
import java.

util.x*;
util.stream .x;

public class StreamExample {
public static void main(String(]

args) {
List<String> names

Arrays.asList (" Alice”,

"Bob",

names.stream ()
.filter (name —> name.startsWith ("A"))
.map(String :: toUpperCase)
.forEach(System.out:: println);

}

}
// Output: ALICE

" Charlie™);

Listing 44: Stream Example

SDB Advanced Programming Streams

90 / 94

Advanced Stream Operations

Example: Reducing and Collecting

import java.util.x;
import java.util.stream.x;

public class StreamAdvanced {
public static void main(String[] args) {
List<Integer> numbers = Arrays.asList(1, 2, 3, 4);

// Reduce Example
int sum = numbers.stream().reduce(0, Integer::sum);
System.out.println(”"Sum: " + sum);

// Collect Example

List<Integer> squaredNumbers = numbers.stream ()
.map(n —=> n * n)
.collect(Collectors.toList());

System.out. println(”Squared: " + squaredNumbers);

Listing 45: Stream Reduce and Collect

SDB Advanced Programming Streams

When to Use Streams

@ For complex data transformations or aggregations.

@ When working with large datasets where parallelism can improve
performance.

@ To simplify and make code more readable compared to traditional
loops.

@ When immutable or stateless data transformations are needed.

SDB Advanced Programming Streams 92 / 94

Advantages and Disadvantages of Streams

Advantages
Cleaner and more declarative code.

Built-in support for parallelism.

Reduces boilerplate code for data operations.
@ Encourages immutability and stateless programming.
Disadvantages

Not ideal for operations with side-effects.
Can be less intuitive for developers new to functional programming.

Overhead of creating streams for small datasets.

e 6 o

Debugging stream operations can be challenging.

SDB Advanced Programming Streams 93 /94

Best Practices for Streams

Use parallel streams cautiously; ensure thread-safety of operations.
Avoid modifying external state in stream operations.
Use primitive streams (‘IntStream’, etc.) to avoid boxing overhead.

Chain multiple operations to leverage the power of streams.

Use terminal operations (‘forEach’, ‘collect’, etc.) judiciously to
conclude stream pipelines.

SDB Advanced Programming Streams 94 / 94

Outline

© Object Reference and Type Compatibility

Introduction

Object References and Type Compatibility:

In object-oriented programming, it's essential to understand which object
references can hold which type of objects.

SDB Advanced Programming Object Reference and Type Compatibility 1/48

Base Class Reference

Base Class Reference A base class reference can hold objects of its own
type or any of its derived classes.

Animal animal = new Dog(); // OK
Animal animal = new Cat(); // OK
Animal animal = new Animal(); // OK

Note: " Animal” is the base class, and "Dog" and " Cat" are derived
classes.

SDB Advanced Programming Object Reference and Type Compatibility

Derived Class Reference

Derived Class Reference A derived class reference can only hold objects
of its own type or any of its own derived classes.

Dog dog = new Dog(); // OK
Dog dog = new GoldenRetriever(); // OK (if GoldenRetriever is a subclass of Dog)
Dog dog = new Animal(); // Error (Animal is a superclass of Dog)

Note: "Dog” is a derived class, and " GoldenRetriever” is a subclass of

"Dog".

Advanced Programming Object Reference and Type Compatibility

Abstract Class Reference

Abstract Class Reference An abstract class reference can hold objects of

its own type or any of its concrete subclasses.
Shape shape = new Circle(); // OK
Shape shape = new Rectangle(); // OK
Shape shape = new Shape(); // Error (Shape is abstract)

Note: "Shape” is an abstract class, and " Circle” and " Rectangle” are
concrete subclasses.

Advanced Programming Object Reference and Type Compatibility

Interface Reference

Interface Reference An interface reference can hold objects of any class
that implements the interface.

Printable printable

= new Document(); // OK (if Document implements Printable)
Printable printable =

new Image(); // OK (if Image implements Printable)

Note: " Printable” is an interface, and "Document” and "Image” are
classes that implement the "Printable” interface.

Advanced Programming Object Reference and Type Compatibility

Interface Extending Another Interface

Interface Extending Another Interface: If an interface extends another

interface, a class that implements the child interface also implements the
parent interface.

interface Printable {
void print();
}

interface ColorPrintable extends Printable {
void printColor();
}

class Document implements ColorPrintable {
Q@Override
public void print() {
// implement print

Q@Override
public void printColor() {
// implement printColor

}

Printable printable = new Document(); // OK
ColorPrintable colorPrintable = new Document(); // OK

Advanced Programming Object Reference and Type Compatibility

Grandparent Class Reference

Grandparent Class Reference: A grandparent class reference can hold
objects of its own type, its child classes, or its grandchild classes.

Grandparent grandparent
Grandparent grandparent
Grandparent grandparent

new Grandparent(); // OK
new Parent(); // OK
new Child(); // OK

SDB Advanced Programming Object Reference and Type Compatibility

Summary

Summary: In summary, the following object references can hold the
following types of objects:

@ Base class reference: base class, derived classes
Derived class reference: derived class, its own derived classes
Abstract class reference: abstract class, non-abstract derived classes

Interface reference: any class that implements the interface

Grandparent class reference: grandparent class, child classes,
grandchild classes

@ Interface extending another interface: a class that implements the
child interface also implements the parent interface

SDB Advanced Programming Object Reference and Type Compatibility

Outline

@ More on Overloading and Overriding

Static Methods in Overloading and Overriding |

Overloading:
@ Static methods can be overloaded like regular methods.
@ The method signature (name + parameters) must differ.

Example 1: Different Parameter Types

class Example {
static void display(int a) {
System.out.println(”Integer: " + a);

static void display(String s) {
System.out.println(”String: " + s);
¥

public static void main(String[] args) {
Example. display (10);
Example. display (" Hello”);
}
}

Listing 46: Static Method Overloading with Different Types

SDB Advanced Programming More on Overloading and Overriding 9 /48

Static Methods in Overloading and Overriding Il

Example 2: Different Number of Parameters

class Example {
static void display(int a) {

}

public static void main(String[] args) {
Example. display (5);
Example. display (5, 10);
}
}

System.out.println(”One parameter: " + a);
static void display(int a, int b) {
System.out.println("Two parameters: " + (a + b));

Listing 47: Static Method Overloading with Different Parameters

SDB Advanced Programming More on Overloading and Overriding

10 / 48

Static Methods in Overriding |

Key Points:

@ Static methods cannot be overridden; they are hidden.

@ The method belongs to the class, not the object.

@ If a subclass defines a static method with the same signature, it hides
the superclass method.

Example 1: Hiding Static Methods

class Parent {

public class Test {

class Child extends Parent {
static void display () { System.out.println(” Child static display”);}

static void display () { System.out.println(”Parent static display”);}

public static void main(String[] args) {

Parent.display(); // Output: Parent static display
Child . display(); // Output: Child static display
}
}
Listing 48: Static Method Hiding
SDB Advanced Programming More on Overloading and Overriding 11 / 48

Static Methods in Overriding Il

Example 2: Static Method Behavior with References

class Parent {
static void show() { System.out.println(”Parent show”);}

class Child extends Parent {
static void show() { System.out.println(” Child show”);}

public class Test {
public static void main(String[] args) {
Parent obj = new Child();
obj.show(); // Output: Parent show (static binding)

Listing 49: Static Methods Using References

SDB Advanced Programming More on Overloading and Overriding

Final Methods in Overloading and Overriding |

Overloading:
@ Final methods can be overloaded like any other method.

Example 1: Overloading with Different Parameters

class Example {
final void display(int a) { System.out.println("Integer: " + a);}
final void display(String s) { System.out.println(”"String: " + s);}
public static void main(String[] args) {
Example obj = new Example();
obj.display (10);
obj.display (" Hello");

Listing 50: Final Method Overloading

Example 2: Overloading with Different Return Types

SDB Advanced Programming More on Overloading and Overriding 13 / 48

Final Methods in Overloading and Overriding Il

class Example {
final int display(int a) { return a = 2;}
final String display(String s) { return "Hello, " + s;}

public static void main(String[] args) {
Example obj = new Example();
System.out. println(obj.display(5));
System.out. println(obj.display ("World"));

Listing 51: Overloading with Return Types

SDB Advanced Programming More on Overloading and Overriding

Final Methods in Overriding

Key Points:

@ Final methods cannot be overridden.

@ Prevents alteration of critical functionality in subclasses.

Example: Attempting to Override a Final Method

class Parent {
final void display () {
System.out. println (" Parent display”);

}

class Child extends Parent {
// void display () { // Error: Cannot override final method
// System.out. printin (" Child display”);

//}

Listing 52: Final Method Example

SDB Advanced Programming More on Overloading and Overriding

15 / 48

Access Specifiers in Overloading and Overriding

Overloading:
@ Access specifiers do not affect method overloading.
@ Methods with the same name but different parameter lists can have
different access modifiers.

Example:

class Example {
public void display(int a) {
System.out. println (" Public Integer: " + a);

private void display(String s) {

System.out.println (" Private String: " + s);
}
public static void main(String[] args) {

Example obj = new Example();

obj.display (10);

// obj.display (" Hello”); // Error: Cannot access private method
}

Listing 53: Access Specifier with Overloading

SDB Advanced Programming More on Overloading and Overriding

Access Specifiers in Overriding |

Key Points:
@ The access specifier of an overriding method cannot be more
restrictive than the method in the superclass.
@ This ensures that the overridden method is at least as accessible as
the original.
Example 1: Valid Access Modifiers

class Parent {
protected void display() { System.out.println(”Parent display”);}

class Child extends Parent {
Q@Override
public void display () { System.out.printlin(” Child display”);}

public class Test {
public static void main(String[] args) {
Parent obj = new Child();
obj.display(); // Output: Child display

Listing 54: Access Specifier with Overriding
SDB Advanced Programming More on Overloading and Overriding

Access Specifiers in Overriding |l

Example 2: Invalid Access Modifiers

class Parent {
public void display () { System.out.println(”"Parent display”);}
}

class Child extends Parent {
// protected void display () { // Error: Cannot reduce visibility
// System.out.printin(” Child display”);
/)y

Listing 55: Invalid Overriding with Access Specifiers

SDB Advanced Programming More on Overloading and Overriding

18 /

48

Outline

@ More on Abstract Class

Abstract Class with Generics

Syntax:

abstract class Container<T> {
private T value;

public Container (T value) {
this.value = value;
}

public T getValue() {
return value;
¥

abstract void process();

}

class StringContainer extends Container<String> {
public StringContainer(String value) {
super(value);

@Override
void process() {

System.out.println (" Processing string: " + getValue());
}

Listing 56: Abstract Class with Generics

SDB Advanced Programming More on Abstract Class

Abstract Class with Nested Classes

Syntax:
abstract class University {
abstract void displaylnfo();
public static class Department {
private String name;
public Department(String name) {
this.name = name;
}
public void displayDepartment() {
System.out.println (" Department: " + name);
}
¥
}
class MIT extends University {
@Override
void displaylnfo () {
System.out.println ("MIT University”);
public static void main(String[] args) {
University . Department csDepartment = new University . Department(” Computer
Science”);
csDepartment . displayDepartment();
}

SDB Advanced Programmir;g More on Abstract Class

Abstract Class with Lambda Expressions

Syntax:

©@Functionallnterface
interface MathOperation {

int operation(int a, int b);
}

abstract class Calculator {
abstract MathOperation getOperation();

public int calculate(int a, int b) {
return getOperation().operation(a, b);

}
}
class AdditionCalculator extends Calculator {
Q@Override
MathOperation getOperation () {
return (a, b) = a + b; // Lambda expression
}

Listing 58: Abstract Class with Lambda Expressions

SDB Advanced Programming More on Abstract Class

Abstract Class with Lambda Expressions

Syntax:

©@Functionallnterface
interface MathOperation {

int operation(int a, int b);
}

abstract class Calculator {
abstract MathOperation getOperation();

public int calculate(int a, int b) {
return getOperation().operation(a, b);

}
}
class AdditionCalculator extends Calculator {
Q@Override
MathOperation getOperation () {
return (a, b) = a + b; // Lambda expression
}

Listing 59: Abstract Class with Lambda Expressions

SDB Advanced Programming More on Abstract Class

Outline

@ More on Interfaces

Interfaces vs Abstract Classes After Java 8 and 9

Key Differences Introduced in Java 8 and 9:

o Interfaces can now have default methods (Java 8) that provide
concrete implementations.

o Interfaces can contain static methods (Java 8) that belong to the
interface itself.

@ Interfaces in Java 9 introduced private methods, allowing code reuse
within interfaces.

@ Abstract classes remain the choice for partially implemented
functionality with instance variables.

SDB Advanced Programming More on Interfaces

Example: Default and Static Methods in Interfaces (Java

8)

interface Vehicle {
void start();

default void stop() {
System.out. println (" Vehicle stopped.”);

static void maintenance() {
System.out. println (" Performing maintenance.”);
¥

}

class Car implements Vehicle {
public void start() {
System.out.println(”Car is starting.”);
}

}

public class Test {
public static void main(String[] args) {

Vehicle car = new Car();
car.start();

car.stop();

Vehicle. maintenance();

¥
}
Listing 60: Default and Static Methods
SDB Advanced Programming More on Interfaces

Example: Private Methods in Interfaces (Java 9)

interface Logger {
default void log(String message) {
printMessage ("LOG: " + message);

private void printMessage(String msg) {
System.out. println(msg);
}

}
class ApplicationLogger implements Logger {}

public class Test {
public static void main(String[] args) {
ApplicationLogger logger = new ApplicationLogger();
logger.log(”" Application started.”);

Listing 61: Private Methods in Interface

SDB Advanced Programming More on Interfaces

How Java Handles the Diamond Problem with Default
Methods

The Diamond Problem: In traditional multiple inheritance, if a class
inherits methods with the same signature from multiple parent classes, it
creates ambiguity about which method to execute.

Java’s Solution:

@ If a class implements multiple interfaces that provide default methods
with the same signature, the class must explicitly override the method
to resolve ambiguity.

@ The class can call a specific interface’s default method using
‘InterfaceName.super.methodName()".

SDB Advanced Programming More on Interfaces

Example: Resolving Diamond Problem in Java

interface A {
default void show() {
System.out. println (" Interface A");

}

interface B {
default void show() {
System.out.println(”Interface B");

}

class C implements A, B {
public void show() {
System.out.println(” Resolving conflict in C");
A.super.show(); // Call specific interface’'s method

}

public class Test {
public static void main(String[] args) {
C obj = new C();
obj.show();

Listing 62: Diamond Problem Resolution

SDB Advanced Programming More on Interfaces

Key Takeaways for Handling Diamond Problem

@ Java does not allow multiple inheritance of classes to prevent
ambiguity.

@ Default methods in interfaces provide multiple inheritance-like
behavior.

@ If an implementing class inherits conflicting default methods, it must
override them explicitly.

@ The ‘InterfaceName.super.methodName()* syntax allows calling a
specific interface’s method.

SDB Advanced Programming More on Interfaces

Introduction to Functional Interfaces

What is a Functional Interface?
@ An interface that has only one abstract method.
@ Can have multiple default and static methods.
e Example: Runnable, ActionListener, Comparator

Lambda Expressions (Introduced in Java 8): A shorthand way to
represent an instance of a functional interface.

Runnable r = () — System.out.printin("Hello World");
r.run();

Method References (Introduced in Java 8): A shorthand way to
represent an instance of a functional interface.

Comparator<String> ¢ = String ::compareTo;
System.out. println(c.compare(” hello”, "world"));

SDB Advanced Programming More on Interfaces 29 / 48

Benefits of Functional Interfaces

Benefits
@ Simplifies code and reduces boilerplate.
@ Improves readability and maintainability.
@ Enables more concise and expressive code.

Example:

public interface MathOperation {
int operation(int a, int b);

}

MathOperation addition = (a, b) —> a + b;
System.out.println(addition.operation(2, 3));

Listing 63: Functional Interface Example

SDB Advanced Programming More on Interfaces 30 / 48

Best Practices for Functional Interfaces

Best Practices

@ Use functional interfaces to represent single-method interfaces.

@ Use lambda expressions and method references to represent instances
of functional interfaces.

@ Keep functional interfaces simple and focused on a single task.

Example:
public interface Logger {
void log(String message);
Logger logger = message —> System.out.printin(message);
logger.log (" Hello World");
Listing 64: Functional Interface Example
SDB Advanced Programming More on Interfaces

Interface with Anonymous Class

Example:

// Define an interface
interface Printable {
void print(String message);

// Create an instance of the interface using an anonymous class
Printable printer = new Printable() {
©Override
public void print(String message) {
System.out. println(message);

}
s

// Use the instance
printer.print(” Hello World");

Listing 65: Interface with Anonymous Class

SDB Advanced Programming More on Interfaces

Takeaways

How it works:
@ We define an interface ‘Printable’ with a single method ‘print’.
@ We create an instance of the interface using an anonymous class.
@ The anonymous class implements the ‘print’ method.
@ We use the instance to call the ‘print’ method.
Benefits:
@ We don't need to create a separate class file for the implementation.
@ The implementation is defined inline, making the code more concise.
@ We can use the instance immediately after defining it.

SDB Advanced Programming More on Interfaces 33 /48

Real-World Example

// Define an interface for a button click listener
interface ButtonClickListener {
void onClick ();

}

// Create a button and add a click listener using an
anonymous class
Button button = new Button(” Click me");
button.addActionListener (new ButtonClickListener () {
Q@Override
public void onClick () {
System.out.println (" Button clicked”);
}
19N

SDB Advanced Programming More on Interfaces 34 / 48

Outline

@ Appendix

Quick Review

Interface Inheritance

Interface Inheritance:

@ An interface can extend another interface using the ‘extends’ keyword.

@ The child interface inherits all the methods of the parent interface.

@ A class that implements the child interface must provide an
implementation for all the methods in the parent interface.

public interface Parentinterface {
void methodl();
}

public interface ChildInterface extends Parentlnterface {
void method2();
}

public class MyClass implements Childlnterface {
@Override

public void methodl() {
// implementation

Q@Override
public void method2() {
// implementation

Advanced Programming Appendix 35 /48

Class Implementing Multiple Interfaces

Class Implementing Multiple Interfaces:

@ A class can implement multiple interfaces using the ‘implements'
keyword.

@ The class must provide an implementation for all the methods in all
the interfaces.

public interface Interfacel {
void methodl();
}
public interface Interface2 {
void method2();
}
public class MyClass implements Interfacel , Interface2 {
Q@Override
public void methodl() {
// implementation
Q@Override
public void method2() {
// implementation
}

SDB Advanced Programming Appendix

Abstract Class Implementing an Interface

Abstract Class Implementing an Interface:

@ An abstract class can implement an interface using the ‘implements’
keyword.

@ The abstract class must provide an implementation for all the
methods in the interface, or declare them as abstract.

public interface Mylnterface {
void methodl();

}
public abstract class MyAbstractClass implements Mylnterface {
@Override
public void methodl() {
// implementation
}

public class MyClass extends MyAbstractClass {
// no need to implement methodl ()

SDB Advanced Programming Appendix 37 / 48

Type Casting

Type Casting:

@ Type casting is used to convert an object reference to a different type.

@ There are two types of type casting: upcasting and downcasting.

public class Animal {

7/

public class Dog extends Animal {

/)

Animal animal = new Dog();
Dog dog = (Dog) animal; // downcasting

Advanced Programming Appendix 38 / 48

Instanceof Operator

Instanceof Operator:

@ The instanceof operator is used to check if an object is an instance of

a particular class or interface.

@ It returns true if the object is an instance of the class or interface, and

false otherwise.

public class Animal {

}

public class Dog extends Animal {
}

Animal animal = new Dog();

if (animal instanceof Dog) {
System.out. printin(”animal is a Dog");

SDB Advanced Programming Appendix

39 / 48

Polymorphism

Polymorphism:
@ Polymorphism is the ability of an object to take on multiple forms,
depending on the context in which it is used.
@ There are two types of polymorphism: method overloading and
method overriding.

public class Animal {
public void sound() {
System.out. println(”Animal makes a sound”);

}

public class Dog extends Animal {
Q@Override
public void sound() {
System.out. println(”"Dog barks”);

}

Animal animal = new Dog();
animal.sound(); // outputs "Dog barks”

SDB Advanced Programming Appendix 40 / 48

Method Overloading

Method Overloading;:

@ Method overloading is a form of polymorphism where multiple
methods with the same name can be defined, but with different
parameters.

@ The method to be called is determined by the number and types of
parameters passed to it.

public class Calculator {
public int add(int a, int b) {
return a + b;

public double add(double a, double b) {
return a + b;

public int add(int a, int b, int c) {
return a + b + c¢;

SDB Advanced Programming Appendix 41 / 48

Method Overriding

Method Overriding:

@ Method overriding is a form of polymorphism where a subclass
provides a specific implementation for a method that is already
defined in its superclass.

@ The method in the subclass has the same name, return type, and
parameters as the method in the superclass.

public class Animal {
public void sound() {
System.out.println (" Animal makes a sound”);

}
public class Dog extends Animal {
Q@Override
public void sound() {
System.out. println(”"Dog barks");
}

SDB Advanced Programming Appendix

Java 8 Default Methods

Java 8 Default Methods:

@ Java 8 introduced default methods, which allow interfaces to provide
a default implementation for methods.

@ Default methods are used to add new functionality to an interface
without breaking existing code.

public interface Mylnterface {
default void methodl() {
System.out.printin (" Default implementation”);
}

}

public class MyClass implements Mylnterface {
// no need to implement methodl ()

SDB Advanced Programming Appendix 43 / 48

Java 9 Private Methods in Interfaces

Java 9 Private Methods in Interfaces:

@ Java 9 introduced private methods in interfaces, which allow
interfaces to provide private helper methods.

@ Private methods are used to encapsulate implementation details and
improve code organization.

public interface Mylnterface {
default void methodl() {
helperMethod () ;
}

private void helperMethod () {
System.out. println (" Helper method”);

Advanced Programming Appendix 44 / 48

Discussion Scenarios

1. Abstract Class vs Interface:

@ When would you choose an abstract class over an interface for a
plugin system?

2. Polymorphism:

@ Can you design a dynamic discount system where behavior changes
based on user type (e.g., Student, Senior Citizen)?

3. Streams:

@ How can you use streams to process large datasets efficiently?

SDB Advanced Programming Appendix 45 / 48

Exercises for Students

1. Polymorphism:

@ Create a class hierarchy for ‘Vehicle' with subclasses ‘Car’ and ‘Bike".
Implement method overriding for ‘start()' and ‘stop()".

@ Extend the hierarchy to include a ‘Bus’ class with additional methods.
2. Abstract Classes:

@ Create an abstract class ‘Employee’ with attributes ‘name’ and ‘id".
Add abstract methods for calculating salary.

@ Extend the class for ‘Manager' and ‘Developer’.
@ Add a ‘Tester' subclass to calculate test case completion rates.
3. Cloning:

@ Implement a ‘Product’ class with attributes ‘name’ and ‘price’.
Demonstrate cloning to create duplicates.

@ Extend the program to include deep cloning for a ‘ProductBundle’
class containing multiple ‘Product’ objects.

SDB Advanced Programming Appendix 46 / 48

Discussion Questions

@ How does method overriding enhance polymorphism?
@ What scenarios require abstract classes versus interfaces?
@ What are the challenges of using cloning in real-world applications?

@ Can you think of scenarios where deep cloning is essential?

SDB Advanced Programming Appendix

Polymorphism: Discussion Points

Inheritance:
@ Why does Java not support multiple inheritance for classes?
@ How do interfaces provide an alternative?

Polymorphism:
@ Why is operator overloading not supported in Java?

@ Can you think of real-world examples where polymorphism is useful?

SDB Advanced Programming Appendix

	Inheritance in Java
	Polymorphism
	Overloading
	Overriding

	Abstract Class
	Interfaces
	Cloning
	Copying Objects
	Wrapper Class
	Streams
	Appendix
	Object Reference and Type Compatibility
	More on Overloading and Overriding
	More on Abstract Class
	More on Interfaces
	Appendix

