
Advanced Programming (OOP)
Module 1: Programming Environment and OOP Introduction

SDB

IEM

Spring 2025

SDB Advanced Programming 1 / 26

Module 1: Topics

Understanding the build system: IDE, debugging, profiling, and
source code management (hands-on in Lab).

Introduction to programming paradigms.

Comparison of OOP with Procedural Paradigm.

Advantages of Object-Oriented Programming.

SDB Advanced Programming 2 / 26

Outline

1 Build System Overview

2 Programming Paradigms

3 Object-Oriented Programming Concepts

Introduction to Build System

What is a Build System?

A set of tools and processes used to automate the compilation,
linking, and packaging of source code into executable programs.

Helps manage dependencies, streamline development, and ensure
reproducibility.

Key Components of a Build System:

Integrated Development Environment (IDE): Provides a
user-friendly interface for writing, debugging, and testing code.
Examples: Eclipse, IntelliJ IDEA, NetBeans.

Build Tools: Automates tasks like compiling code, running tests, and
generating executables. Examples: Maven, Gradle.

Version Control Systems: Tools to track and manage changes in
code over time. Examples: Git, SVN.

SDB Advanced Programming Build System Overview 3 / 26

Debugging, Profiling, and Source Code Management

Debugging:

Identifying and fixing errors in code using breakpoints, stack traces,
and logs.

Debuggers in IDEs help inspect variables, step through code, and
locate issues.

Profiling:

Analyzing the performance of a program to identify bottlenecks or
inefficiencies.

Tools like VisualVM or JProfiler provide insights into CPU usage,
memory consumption, and execution time.

Source Code Management:

Organizing and maintaining versions of source code across team.

Key commands in Git: git add, git commit, git push, git pull.

Platforms like GitHub and GitLab enhance collaboration.

SDB Advanced Programming Build System Overview 4 / 26

Outline

1 Build System Overview

2 Programming Paradigms

3 Object-Oriented Programming Concepts

Introduction to Programming Paradigms

What is a Programming Paradigm?

A style or ”way” of programming that defines how problems are
solved.

Paradigms influence the structure of code, approaches to
problem-solving, and the design of software.

Common paradigms include Procedural, Object-Oriented, Functional,
and Event-Driven programming.

Why Paradigms Matter:

Paradigms determine the flow and design of your code.

They guide how data is managed, how control flows through the
program, and how code is structured for maintenance.

The choice of paradigm affects the scalability, maintainability, and
efficiency of the code.

SDB Advanced Programming Programming Paradigms 5 / 26

Introduction to Programming Paradigms

What is a Programming Paradigm?

A style or ”way” of programming that defines how problems are
solved.

Paradigms influence the structure of code, approaches to
problem-solving, and the design of software.

Common paradigms include Procedural, Object-Oriented, Functional,
and Event-Driven programming.

Why Paradigms Matter:

Paradigms determine the flow and design of your code.

They guide how data is managed, how control flows through the
program, and how code is structured for maintenance.

The choice of paradigm affects the scalability, maintainability, and
efficiency of the code.

SDB Advanced Programming Programming Paradigms 5 / 26

Key Differences Between Paradigms

Procedural Programming:

Focuses on functions or procedures that operate on data.

Programs are typically written as sequences of steps.

Example: C, Pascal.

Object-Oriented Programming:

Centers around objects, which bundle both data and functions that
operate on the data.

Promotes modularity, reusability, and maintainability by organizing
code into classes and objects.

Example: Java, Python.

SDB Advanced Programming Programming Paradigms 6 / 26

Key Differences Between Paradigms

Procedural Programming:

Focuses on functions or procedures that operate on data.

Programs are typically written as sequences of steps.

Example: C, Pascal.

Object-Oriented Programming:

Centers around objects, which bundle both data and functions that
operate on the data.

Promotes modularity, reusability, and maintainability by organizing
code into classes and objects.

Example: Java, Python.

SDB Advanced Programming Programming Paradigms 6 / 26

Procedural and OOP Paradigms: An Example I

Real-World Example: A Banking System
Procedural Approach:

double ba l ance = 1000 ;

vo id d e p o s i t (double amount) {
ba l ance += amount ;

}

vo id withdraw (double amount) {
i f (ba l ance >= amount) {

ba l ance −= amount ;
} e l s e {

System . out . p r i n t l n (” I n s u f f i c i e n t
Funds”) ;

}
}

Listing 1: Procedural Example

Functions operate directly
on global variables (e.g.,
balance).

Limited modularity and
difficult to extend (e.g.,
adding account types).

SDB Advanced Programming Programming Paradigms 7 / 26

Procedural and OOP Paradigms: An Example II

Object-Oriented Approach:

c l a s s BankAccount {
p r i v a t e double ba l ance ;

pub l i c BankAccount (double
i n i t i a l B a l a n c e) {

t h i s . b a l ance = i n i t i a l B a l a n c e ;
}

pub l i c vo id d e p o s i t (double amount) {
ba l ance += amount ;

}

pub l i c vo id withdraw (double amount) {
i f (ba l ance >= amount) {

ba l ance −= amount ;
} e l s e {

System . out . p r i n t l n (”
I n s u f f i c i e n t Funds”) ;

}
}

}

Listing 2: OOP Example

Why OOP Wins:

Enhances code readability
and maintainability.

Protects data integrity and
supports real-world
modeling.

Simplifies the addition of
new features (e.g., interest
calculation).

SDB Advanced Programming Programming Paradigms 8 / 26

Key Differences Between Procedural and OOP I

Procedural OOP
Focus Functions and proce-

dures that operate on
data.

Objects that encapsulate data
and behavior.

Modularity Code organized into
functions.

Code organized into classes
and objects.

Data Handling Global data shared
across functions.

Data encapsulated within ob-
jects (Encapsulation).

Code Reusability Limited, achieved
through function reuse.

High, through inheritance and
polymorphism.

Scalability Becomes complex for
large systems.

Better suited for large, complex
systems.

Real-World Mod-
eling

Weak abstraction for
real-world entities.

Strong abstraction through ob-
jects and classes.

Examples C, Pascal. Java, C++, Python.

SDB Advanced Programming Programming Paradigms 9 / 26

Key Differences Between Procedural and OOP II

Procedural Programming:

Focuses on functions and procedures.

Data and functions are separate.

Code reuse is limited to function calls.

Better for simple, linear tasks.

Object-Oriented Programming:

Focuses on objects that encapsulate data and behavior.

Promotes code reusability through inheritance and polymorphism.

Modular design makes it better for large and complex systems.

Strongly aligns with real-world problem modeling.

SDB Advanced Programming Programming Paradigms 10 / 26

Food for Thought: Paradigm Shift

How does your thinking about a problem change when you switch
from procedural to object-oriented programming?

In what real-world situations might procedural programming be more
beneficial than OOP?

Are there tasks where mixing paradigms (hybrid programming) could
lead to better solutions?

SDB Advanced Programming Programming Paradigms 11 / 26

Outline

1 Build System Overview

2 Programming Paradigms

3 Object-Oriented Programming Concepts

Introduction to Object-Oriented Programming

What is Object-Oriented Programming?

A programming paradigm that revolves around the concept of objects
and classes.
Focuses on the interactions between objects and their properties.

What is a Class?

A blueprint or template that defines the properties and behavior of an
object.
A class defines the structure and behavior of an object.

What is an Object?

An instance of a class.
Has its own set of attributes (data) and methods (functions).

Class Object

Attributes Methods

SDB Advanced Programming Object-Oriented Programming Concepts 12 / 26

Need for Classes and Objects

Why do we need Classes and Objects?

To model real-world entities and systems.

To create reusable and modular code.

To improve code maintainability and scalability.

Example:

A car can be represented as an object with attributes like color,
model, and year.

A car can have methods like startEngine(), accelerate(), and brake().

Car

Attributes:
color, model, year

Methods:
startEngine(), accelerate(), brake()

SDB Advanced Programming Object-Oriented Programming Concepts 13 / 26

Benefits of Using Classes and Objects

Benefits of Using Classes and Objects

Improved code organization and structure.

Easier to modify and maintain code.

Reduced code duplication.

Improved scalability and reusability.

Example:

Account Customer

Transaction Attributes: balance, name, date

Methods: deposit(), withdraw(), transfer()

SDB Advanced Programming Object-Oriented Programming Concepts 14 / 26

Modelling a Real-World Use Case

University
name, location, founded

addDepartment()
removeDepartment()

Department
name, chair, office

addCourse()
removeCourse()

Course
name, credits, description

addStudent()
removeStudent()
addInstructor()

Student
name, id, major
enrollInCourse()
dropCourse()

Instructor
name, id, dept.
teachCourse()
gradeStudent()

Grade
grade, date, course
updateGrade()
getGrade()

SDB Advanced Programming Object-Oriented Programming Concepts 15 / 26

Modelling a Real-World Use Case

Customer Account Transaction

Bank

ATM Online

Mobile

Credit

Debit

Transfer

Withdrawal

Deposit

Statement

History

Security Fraud Compliance Regulation

SDB Advanced Programming Object-Oriented Programming Concepts 16 / 26

Core Concepts of OOP

Encapsulation: Binding data and methods together to restrict access
to an object’s internal state.

Inheritance: Deriving new classes from existing ones to promote
code reuse.

Polymorphism: Using a single interface to represent different data
types and operations.

Abstraction: Hiding the complex implementation details and
exposing only the necessary functionality.

SDB Advanced Programming Object-Oriented Programming Concepts 17 / 26

Encapsulation: Detailed Explanation

Encapsulation ensures that an object’s internal state is hidden from
the outside world and can only be modified via specific methods
(getters and setters).

This helps in protecting the integrity of the object’s data and
preventing unintended interference.

Example: A ‘Car‘ class might have private attributes like ‘speed‘ and
‘fuel‘, and public methods like ‘accelerate()‘ and ‘brake()‘ to
manipulate them safely.

SDB Advanced Programming Object-Oriented Programming Concepts 18 / 26

Example: Encapsulation in Java

pub l i c c l a s s Student {
p r i v a t e S t r i n g name ;
p r i v a t e i n t age ;

pub l i c S t r i n g getName () {
r e t u r n name ;

}

pub l i c vo id setName (S t r i n g name) {
t h i s . name = name ;

}

pub l i c i n t getAge () {
r e t u r n age ;

}

pub l i c vo id setAge (i n t age) {
t h i s . age = age ;

}
}

Listing 3: Encapsulation Example

SDB Advanced Programming Object-Oriented Programming Concepts 19 / 26

Food for Thought: Encapsulation

Can you think of a situation in your daily life where encapsulation is
beneficial (e.g., personal information, financial data)?

How can you apply encapsulation in a larger software project, like a
web application?

SDB Advanced Programming Object-Oriented Programming Concepts 20 / 26

Inheritance: Detailed Explanation

Inheritance allows new classes to inherit properties and behaviors
(methods) of existing classes.

It promotes code reuse and establishes relationships between classes.

Example: A ‘Vehicle‘ class could be extended to create specialized
classes like ‘Car‘ or ‘Truck‘, which inherit general attributes like
‘speed‘ and ‘fuel‘ from ‘Vehicle‘, but also have their own specific
attributes.

SDB Advanced Programming Object-Oriented Programming Concepts 21 / 26

Example: Inheritance in Java

public class Vehicle {

protected String model;

protected int speed;

public void accelerate () {

speed += 10;

}

}

public class Car extends Vehicle {

private int passengers;

public void honk() {

System.out.println("Honk!");

}

}

Listing 4: Inheritance Example

SDB Advanced Programming Object-Oriented Programming Concepts 22 / 26

Polymorphism: Detailed Explanation

Polymorphism allows a single method or interface to be used for
different data types or objects.

It enables flexibility in code by allowing one interface to be
implemented by multiple classes, each with its own behavior.

Example: A ‘Shape‘ interface can have a method ‘draw()‘, and
classes ‘Circle‘, ‘Rectangle‘, and ‘Triangle‘ can implement ‘draw()‘
differently for each shape.

SDB Advanced Programming Object-Oriented Programming Concepts 23 / 26

Example: Polymorphism in Java

public interface Shape {

void draw();

}

public class Circle implements Shape {

public void draw() {

System.out.println("Drawing Circle");

}

}

public class Rectangle implements Shape {

public void draw() {

System.out.println("Drawing Rectangle");

}

}

Listing 5: Polymorphism Example

SDB Advanced Programming Object-Oriented Programming Concepts 24 / 26

Abstraction: Detailed Explanation

Abstraction focuses on exposing only the essential features of an
object while hiding the implementation details.

It helps reduce complexity and allows for simpler interaction with
objects.

Example: A ‘RemoteControl‘ class abstracts the complexity of
controlling a ‘TV‘. The user just presses buttons without needing to
understand the inner workings of the TV.

SDB Advanced Programming Object-Oriented Programming Concepts 25 / 26

Advantages of OOP

Improved Code Maintainability and Reusability: Classes and
objects can be reused across different projects, saving time and effort.

Real-World Problem Modeling: OOP mirrors real-world scenarios,
making it easier to model complex systems.

Scalability and Ease of Debugging: Code is modular and easy to
extend. Bugs can be localized within specific objects.

Real-World Example: Banking Application

Encapsulation: Account details stored privately and accessible
through public methods.

Inheritance: SavingsAccount and CheckingAccount are subclasses of
Account.

Polymorphism: A common ‘processTransaction()‘ method for
different account types.

SDB Advanced Programming Object-Oriented Programming Concepts 26 / 26

Outline

4 Appendix

5 Exercises

6 Recommended Resources

Basic Git Commands I

Essential Commands:

git init - Initialize a new Git repository.

git clone <repo-url> - Clone a remote repository.

git add <file> - Stage changes for commit.

git commit -m "message" - Commit staged changes with a
message.

git status - Show the working tree status.

git log - View commit history.

git push - Upload local commits to a remote repository.

git pull - Fetch and integrate changes from the remote repository.

SDB Advanced Programming Appendix 1 / 15

Basic Git Commands II

Working Directory

Staging Area Local Repository

Remote Repository

git add

git commit

git push git pull

SDB Advanced Programming Appendix 2 / 15

Connecting with GitHub I

Steps to Connect:

1 Create a GitHub account at https://github.com.

2 Generate an SSH key using ssh-keygen (Linux/Mac) or Git Bash
(Windows).

3 Add the SSH key to your GitHub account under Settings → SSH
and GPG keys.

4 Test the connection with ssh -T git@github.com.

5 Link a local repository:

git remote add origin <repo-url>.
git push -u origin main.

SDB Advanced Programming Appendix 3 / 15

https://github.com

Connecting with GitHub II

Local Repository

GitHub (Remote)

git pushgit pull

SDB Advanced Programming Appendix 4 / 15

OOP Evolution and Impact

Influence on Modern Programming:
Frameworks: Spring, Django, Angular.
Design Patterns: Singleton, Factory, Observer.

Benefits: Reusability, Modularity, Maintainability.

Limitations: Overhead in small applications.

SDB Advanced Programming Appendix 5 / 15

Common Pitfalls in OOP

Overusing Inheritance: Leads to tight coupling.

Ignoring Encapsulation: Exposing internal state directly.

Complex Hierarchies: Difficult to manage and extend.

Solution: Prefer composition over inheritance, follow design principles.

SDB Advanced Programming Appendix 6 / 15

Common Pitfalls in OOP

Overusing Inheritance: Leads to tight coupling.

Ignoring Encapsulation: Exposing internal state directly.

Complex Hierarchies: Difficult to manage and extend.

Solution: Prefer composition over inheritance, follow design principles.

SDB Advanced Programming Appendix 6 / 15

Discussion Questions

1 Why is version control essential in collaborative development?

2 What is the impact of IDE customization on productivity?

3 How do design principles influence code quality?

4 Can you think of scenarios where procedural programming might
outperform OOP?

SDB Advanced Programming Appendix 7 / 15

Discussion Questions

1 Why is version control essential in collaborative development?

2 What is the impact of IDE customization on productivity?

3 How do design principles influence code quality?

4 Can you think of scenarios where procedural programming might
outperform OOP?

SDB Advanced Programming Appendix 8 / 15

OOP Concepts: Examples

Encapsulation Example:

A ‘BankAccount‘ class with private attributes ‘balance‘ and public
methods ‘deposit‘ and ‘withdraw‘ ensures controlled access.

Inheritance Example:

A ‘Vehicle‘ class is extended by ‘Car‘ and ‘Truck‘ classes, inheriting
attributes like ‘speed‘ while adding specific features.

Polymorphism Example:

A ‘Shape‘ interface implemented by ‘Circle‘, ‘Rectangle‘, and
‘Triangle‘, each with its own ‘draw‘ method.

SDB Advanced Programming Appendix 9 / 15

Achieving Reusability, Modularity, and Maintainability

Reusability: Classes like ‘Logger‘ can be reused across different
applications.

Modularity: Separating functionality into independent modules, e.g.,
‘PaymentProcessor‘ and ‘InventoryManager‘ in e-commerce.

Maintainability: Encapsulation and abstraction reduce the risk of
unintended changes affecting the entire system.

SDB Advanced Programming Appendix 10 / 15

SOLID Principles in OOP

Single Responsibility Principle (SRP): A class should have one and
only one reason to change.

Open-Closed Principle (OCP): Software entities should be open for
extension but closed for modification.

Liskov Substitution Principle (LSP): Derived classes must be
substitutable for their base classes.

Interface Segregation Principle (ISP): No client should be forced
to depend on methods it does not use.

Dependency Inversion Principle (DIP): Depend on abstractions,
not on concretions.

SDB Advanced Programming Appendix 11 / 15

DRY: Don’t Repeat Yourself

Definition: Avoid duplicating logic by abstracting common
functionality into reusable components.

Benefits: Easier maintenance, reduced risk of inconsistencies.

Example: Extract common code for user authentication into a shared
‘AuthManager‘ class.

SDB Advanced Programming Appendix 12 / 15

Outline

4 Appendix

5 Exercises

6 Recommended Resources

Exercises for Students

1. Define Classes and Objects:

Create a class ‘Book‘ with attributes like ‘title‘, ‘author‘, and ‘price‘.

Write methods to get and set these attributes.

Extend this class to include functionality such as calculating discounts
based on the price.

2. OOP in Practice:

Implement a ‘Bank‘ class with methods for deposit and withdrawal.

Extend this to include different types of accounts using inheritance.

Add features like transaction history and interest calculation.

SDB Advanced Programming Exercises 13 / 15

Discussion Questions

Why is OOP considered more scalable compared to procedural
programming?

Can you think of a real-world scenario where polymorphism is useful?

What are the trade-offs of using OOP versus other paradigms?

SDB Advanced Programming Exercises 14 / 15

Outline

4 Appendix

5 Exercises

6 Recommended Resources

Recommended Resources: Books and Articles

Book: ”Effective Java” by Joshua Bloch
A comprehensive guide to writing good Java code with best practices.
Focuses on design patterns, Java-specific tips, and writing clean,
maintainable code.

Article: ”Object-Oriented Design & Programming” by Bjarne
Stroustrup

An insightful article by the creator of C++ that discusses the principles
of object-oriented design.

Website: Oracle Java Tutorials
Comprehensive tutorials directly from the creators of Java, covering
OOP concepts in Java.
URL: https://docs.oracle.com/javase/tutorial/

SDB Advanced Programming Recommended Resources 15 / 15

https://docs.oracle.com/javase/tutorial/

	Build System Overview
	Programming Paradigms
	Object-Oriented Programming Concepts
	Appendix
	Appendix
	Exercises
	Recommended Resources

