Lab Assignment: Multithreading in Java

Objective:

Understand and implement the basics of multithreading in Java, including thread creation,
synchronization, and inter-thread communication.

Requirements:

1. Create a class that extends Thread to simulate a countdown timer.
2. Create a class that implements Runnable to simulate printing numbers in a sequence.

3. Demonstrate synchronization using a shared counter, ensuring thread-safe operations when
multiple threads update the counter.

4. Use the wait () and notify() methods for inter-thread communication.

Code Starter:

// CountdownTimer. java
public class CountdownTimer extends Thread {
private int start;

public CountdownTimer (int start) {

this.start = start;
}
@0verride
public void run() {
for (int i = start; i >= 0; i--) {
System.out.println("Countdown: " + 1i);
try {
Thread.sleep (1000); // Pause for 1 second
} catch (InterruptedException e) {
e.printStackTrace ();
}
}
}

}

// NumberPrinter. java
public class NumberPrinter implements Runnable {
private int limit;

public NumberPrinter (int limit) {
this.limit = limit;

}

@0verride



}

public void run() {

for (int i = 1; i <= limit; i++) {
System.out.println("Number: " + i);
try {

Thread.sleep (500); // Pause for 0.5 seconds
} catch (InterruptedException e) {
e.printStackTrace ();

}

// SharedCounter. java
public class SharedCounter {

private int count = 0;

public synchronized void increment () {
count ++;

}

public synchronized int getCount () {
return count;

}

Exercises:
. Modify the CountdownTimer to accept a message that gets printed alongside the countdown.

. Create a thread-safe Queue class and implement enqueue() and dequeue() methods using

synchronization.

. Use ExecutorService to manage a fixed pool of threads for executing Runnable tasks.

. Create a multithreaded application where one thread generates random numbers and another

thread calculates their sum.

Bonus Tasks:
. Implement a Producer-Consumer problem using wait() and notify().

. Demonstrate ReentrantLock for thread synchronization instead of the synchronized key-

word.

. Use Callable and Future to execute a task that returns a result, such as calculating factorial.

. Visualize thread states (NEW, RUNNABLE, BLOCKED, etc.) by printing thread states during

execution.

Submission:
Submit the following;:



e Java source code files.
e Screenshots showing the program execution with multiple threads.

e A short document explaining the synchronization and inter-thread communication used.



