Inheritance, Overriding, and Abstract Class

Objective:

In this lab, you will learn about the concepts of inheritance, overriding, and abstract classes in
Java. You will create a program that demonstrates these concepts through practical implementa-
tion.

Requirements:

1. Create a base class called Vehicle with the attributes color, maxSpeed, and numWheels. The
class should include the following methods:

e displayDetails() — Displays the vehicle’s attributes.
e accelerate(int speedIncrease) — Adjusts the vehicle’s speed based on the parameter.

e brake(int speedDecrease) — Adjusts the vehicle’s speed when braking.
2. Create two subclasses Car and Truck that inherit from Vehicle. Each subclass should:

e Add at least one unique attribute.

o Override accelerate() and brake () methods to include specific messages for each type
of vehicle.

3. Create an abstract class ElectricVehicle that extends the Vehicle class. The abstract class
should:

e Introduce an abstract method chargeBattery(int percentage) that accepts a param-
eter to indicate the charging percentage.

4. Create a subclass ElectricCar that extends ElectricVehicle. The class should:
e Implement the chargeBattery() method.

5. Write a separate TestVehicle class containing the main method to demonstrate the classes
and their functionalities.

Exercises:

1. Create an interface FuelEfficient with a method calculateFuelEfficiency(double distance,
double fuelConsumed). Implement this interface in the Car and Truck classes.

2. Create a subclass HybridCar that extends the Car class and implements both the FuelEfficient
interface and the chargeBattery() method.

3. Create a subclass Motorcycle that extends the Vehicle class and overrides the accelerate ()
method to include parameter handling for speed adjustment.

Hint:
Here is a partial implementation to get you started. Complete the omitted parts as indicated
in the comments:



// Vehicle. java

public class Vehicle {
private String color;
private int maxSpeed;
private int numWheels;
private int currentSpeed;

public Vehicle(String color, int maxSpeed, int numWheels) {

this.color = color;
this.maxSpeed = maxSpeed;
this.numWheels = numWheels;

this.currentSpeed = 0; // Initial speed is O
}

public void displayDetails () {
System.out.println("Color: + color);
System.out.println("Max Speed: " + maxSpeed + " km/h");
System.out.println("Number of Wheels: " + numWheels);
System.out.println("Current Speed: " + currentSpeed + " km/h");

public void accelerate(int speedIncrease) {
// Update currentSpeed and ensure it doesn’t exceed maxSpeed
// TODO: Implement this method

public void brake (int speedDecrease) {
// Decrease currentSpeed and ensure it doesn’t go below O
// TODO: Implement this method

}

// Car. java
public class Car extends Vehicle {
private int numDoors;

public Car(String color, int maxSpeed, int numWheels, int numDoors) {
super (color, maxSpeed, numWheels);
this.numDoors = numDoors;

}

@0verride
public void accelerate(int speedIncrease) {
// TODO: Implement with a custom message for Car

}



Q@0verride
public void brake(int speedDecrease) {
// TODO: Implement with a custom message for Car

}
}

// ElectricVehicle. java
public abstract class ElectricVehicle extends Vehicle {
public ElectricVehicle(String color, int maxSpeed, int numWheels) {
super (color, maxSpeed, numWheels);

}

public abstract void chargeBattery(int percentage); // TODO: Implement in subcl
}

// TestVehicle. java
public class TestVehicle {
public static void main(String[] args) {
Vehicle car = new Car ("Red", 200, 4, 4);
car.displayDetails ();
car.accelerate (50);
car.brake (20);

// TODO: Add instances for Truck, ElectricCar, and demonstrate their functi

Bonus Challenges:

e Enhance the ElectricCar class to track battery charge percentage and ensure it cannot
exceed 100

e Use an array or a List<Vehicle> in the main method to showcase polymorphism by calling
methods like accelerate() and displayDetails() on different types of vehicles.

e Add exception handling for invalid input values (e.g., negative speed increments or battery
charge percentages).

Submission:

Submit your completed code files and a report explaining your implementation, along with
screenshots of the program output.



