Java Basics - Constructor, Array, and Function Overloading

Objective: Write a Java program that demonstrates the use of constructors, arrays, and function
overloading.
Requirements:

e Create a new Java class that represents a student with attributes such as name and age.
e Use different types of constructors to initialize the student attributes.

e Create an array to store multiple student objects.

e Implement function overloading to display student information.

Exercises:

e Write a Java program that calculates the average age of students in the array.

e Write a Java program that sorts the students by name.

e Write a Java program that demonstrates the use of a constructor with default values for
attributes.

Hint: Here is an example code snippet to get you started:
Constructor:

// Student. java

public class Student {
private String name;
private int age;

// Default constructor

public Student () {
this.name = "Unknown";
this.age = 0;

¥

// Parameterized constructor

public Student (String name, int age) {
this.name = name;
this.age = age;

}

// Copy constructor

public Student (Student student) {
this.name = student.name;
this.age = student.age;

}

// Getter methods



public String getName () {
return name;

}

public int getAge () {
return age;

}

Array:

// StudentArray. java
public class StudentArray {
public static void main(Stringl[] args) {
// Create an array to store student objects
Student [] students = new Student [5];

// Initialize student objects and add them to the array
students [0] = new Student("Alice", 20);
students [1] = new Student ("Bob", 22);

students [2] = new Student ("Charlie", 21);
students [3] = new Student(); // default constructor
students [4] = new Student(students[0]); // copy constructor

// Display student information

for (int i = 0; i < students.length; i++) {
System.out.println("Name: " + students[i].getName() + ",
Age: " + students[i].getAge());

Function Overloading:

// DisplayStudentInfo. java
public class DisplayStudentInfo {
// Function to display student information by name
public void display(String student_name) {
System.out.println("Student Name: " + student_name);

}

// Function to display student information by name and age

public void display(Student student_ref) {
System.out.println("Student Name: " + student_ref.getName() + "
Age: " + student_ref.getAge());

}

public static void main(String[] args) {



DisplayStudentInfo displayInfo = new DisplayStudentInfo ();

// Display information using function overloading
displayInfo.display("Alice");
displayInfo.display(new Student("Bob", 22));

Bonus Exercises:

Write a Java program that implements a method to remove a student from the array based
on their name.

Hint: Use a loop to iterate through the array and find the student with the matching name,
then shift the remaining students to fill the gap.

Write a Java program that implements a method to update a student’s age in the array based
on their name.

Hint: Use a loop to iterate through the array and find the student with the matching name,
then update their age.

Write a Java program that calculates the total number of students in the array who are above
a certain age (e.g., 21).

Hint: Use a loop to iterate through the array and count the students who meet the condition.
Write a Java program that sorts the students in the array based on their age in descending
order.

Hint: Use a sorting algorithm such as bubble sort or selection sort.

Write a Java program that implements a method to search for a student in the array based
on their name and returns their age.

Hint: Use a loop to iterate through the array and find the student with the matching name,
then return their age.

Write a Java program that implements a method to display the student information in a
tabular format (e.g., using a table or a grid).

Hint: Use a loop to iterate through the array and print the student information in a tabular
format.

Write a Java program that implements a method to save the student information in a file and
read it back from the file.

Hint: Use the FileWriter and FileReader classes to write and read the student information to
and from a file.



